The European Physical Journal Special Topics

, Volume 159, Issue 1, pp 101–111 | Cite as

Single and two-qubit dynamics in circuit QED architectures

  • R. MiglioreEmail author
  • A. Messina


In this paper we overview our researches on the generation and the control of entangled states in the framework of circuit quantum electrodynamics. Applications in the context of quantum computing and quantum information theory are discussed.


Entangle State European Physical Journal Special Topic Josephson Junction Rabi Oscillation Average Photon Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A.J. Leggett et al., Rev. Mod. Phys. 59, 1 (1987); A.J. Leggett, J. Phys.: Condens. Matter 14, R415 (2002) Google Scholar
  2. D. Estève et al. (eds.), Quantum Entanglement and Information Processing, Les Houches 2003 Session LXXIX (Elsevier, Amsterdam, 2004) Google Scholar
  3. F. De Martini, C. Monroe (eds.), Experimental Quantum Computation and Information (IOP Press, Ohmsha, 2002); and references therein Google Scholar
  4. S. Braunstein, H.-K. Lo, Experimental Proposals for Quantum Computers, Fortschr. Phys. 48, 767 (2000) Google Scholar
  5. R.G. Clark, Experimental Implementation of Quantum Computation (Rinton Press, 2001) Google Scholar
  6. D.P. Di Vincenzo, Science 270, 255 (1995); C.H. Bennet, D.P. Di Vincenzo, Nature 404, 247 (2000); D.P. Di Vincenzo, Fortsch. Phys. 48, Experimental Proposals for Quantum Computation (2000), also available at [quant-ph/0002077] Google Scholar
  7. J.M. Raimond et al., Rev. Mod. Phys. 73, 565 (2001) Google Scholar
  8. R. McDermott, R.W. Simmonds, M. Steffen, K.B. Cooper, K. Cicak, K.D. Osborn, S. Oh, D.P. Pappas, J.M. Martinis, Science 307, 1299 (2005) Google Scholar
  9. J.B. Majer, F.G. Paauw, A.C.J. ter Haar, C.J.P.M. Harmans, J.E. Mooij, Phys. Rev. Lett. 94, 090501 (2005) Google Scholar
  10. T. Yamamoto, Yu.A. Pashkin, O. Astafiev, Y. Nakamura, J.S. Tsai, Nature (London) 425, 941 (2003) Google Scholar
  11. A.J. Berkley, H. Xu, R.C. Ramos, M.A. Gubrud, F.W. Strauch, P.R. Johnson, J.R. Anderson, A.J. Dragt, C.J. Lobb, F.C. Wellstood, Science 300, 1548 (2003) Google Scholar
  12. Y.A. Pashkin, T. Yamamoto, O. Astafiev, Y. Nakamura, D. Averin, J. Tsai, Nature 421, 823 (2003) Google Scholar
  13. A. Blais, J. Gambetta, A. Wallraff, D.I. Schuster, S.M. Girvin, M.H. Devoret, R.J. Schoelkopf, Quantum Information Processing with Circuit Quantum Electrodynamics (2006) [arXiv:cond-mat/0612038] Google Scholar
  14. A. Blais, R.-S. Huang, A. Wallraff, S.M. Girvin, R.J. Schoelkopf, Phys. Rev. A 69, 062320 (2004); A. Wallraff, D.I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S.M. Girvin, R.J. Schoelkopf, Nature 431, 162 (2004) Google Scholar
  15. L. Frunzio, A. Wallraff, D. Schuster, J. Majer, R. Schoelkopf, IEEE Trans. Appl. Supercond. 15, 860 (2005) Google Scholar
  16. Y. Makhlin, G. Schön, A. Shnirman, Rev. Mod. Phys. 73, 357 (2001) Google Scholar
  17. J.Q. You, F. Nori, Phys. Today 58, 42 (2005) Google Scholar
  18. M.H. Devoret, J.M. Martinis, in Quantum Entanglement and Information Processing, edited by D. Esteve, J.M. Raimond, J. Dalibard (Elsevier, Amsterdam, 2004), p. 433 Google Scholar
  19. D.P. DiVincenzo, Fortschr. Phys. 48, 771 (2000) Google Scholar
  20. Y. Nakamura, Yu.A. Pashkin, J.S. Tsai, Nature 398, 786 (1999) Google Scholar
  21. D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, M.H. Devoret, Science 296, 886 (2002) Google Scholar
  22. E. Collin, G. Ithier, A. Aassime, P. Joyez, D. Vion, D. Esteve, Phys. Rev. Lett. 93, 157005 (2004) Google Scholar
  23. A. Izmalkov, M. Grajcar, E. Il'ichev, T. Wagner, H.-G. Meyer, A.Y. Smirnov, M.H.S. Amin, A. MaassenvandenBrink, A.M. Zagoskin, Phys. Rev. Lett. 93, 037003 (2004); M. Grajcar, A. Izmalkov, S.H.W. van der Ploeg, S. Linzen, E. Il'ichev, T. Wagner, U. Hübner, H.-G. Meyer, A. MaassenvandenBrink, S. Uchaikin, A.M. Zagoskin, Phys. Rev. B 72, 020503(R) (2005) Google Scholar
  24. M. Steffen, M. Ansmann, R.C. Bialczak, N. Katz, E. Lucero, R. McDermott, M. Neeley, E.M. Weig, A.N. Cleland, J.M. Martinis, Science 313, 1423 (2006) Google Scholar
  25. R. Migliore, A. Messina, Phys. Rev. B 67, 134505 (2003) Google Scholar
  26. R. Migliore, A. Konstadopoulou, A. Vourdas, T.P. Spiller, A. Messina, Phys. Lett. A 319, 67 (2003) Google Scholar
  27. R. Migliore, J. Supercond. 19 (2005) Google Scholar
  28. R. Migliore, A. Messina, Phys. Rev. B 72, 214508 (2005) Google Scholar
  29. R. Migliore, K. Yuasa, H. Nakazato, A. Messina, Phys. Rev. B 74, 104503 (2006) Google Scholar
  30. S. Han, J. Lapointe, J.E. Lukens, Phys. Rev. B 46, 6338 (1992) Google Scholar
  31. F. Chiarello, P. Carelli, M.G. Castellano, C. Cosmelli, L. Gangemi, R. Leoni, S. Poletto, D. Simeone, G. Torrioli, Supercond. Sci. Technol. 18, 1370 (2005) Google Scholar
  32. F. Chiarello, Phys. Lett. A 277, 189 (2000) Google Scholar
  33. F. Chiarello (2006) [cond-mat/0602464] Google Scholar
  34. B. Yurke, J.S. Denker, Phys. Rev. A 29, 1419 (1984) Google Scholar
  35. M.H. Devoret, in Quantum Fluctuations, edited by S. Reynaud, E. Giacobino, J. Zinn-Justin (Elsevier, Amsterdam, 1996), p. 351 Google Scholar
  36. R. Migliore, A. Messina, A. Napoli, Eur. Phys. J. B 13, 585 (2000); Int. J. Mod. Phys. B. 14, 3104 (2000); Eur. Phys. J. B 22, 111 (2001); J. Opt. B: Quantum Semiclass. Opt. 3, 29 (2001) Google Scholar
  37. The optimal point strategy was first invented and demonstrated in: D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, M.H. Devoret, Science 296, 886 (2002), Applications of this concept to the case of flux qubits can be found, for instance, in: P. Bertet, I. Chiorescu, G. Burkard, K. Semba, C.J.P.M. Harmans, D.P. DiVincenzo, J.E. Mooij, Phys. Rev. Lett. 95, 257002 (2005); P. Bertet, C.J.P.M. Harmans, J.E. Mooij, Phys. Rev. B 73, 064512 (2006); A.O. Niskanen, Y. Nakamura, J.-S. Tsai, Phys. Rev. B 73, 094506 (2006) Google Scholar
  38. Quality factors up to Q ∼106 have been reported for under-coupled resonators, corresponding to a low damping rate ωF/2 πQ ∼5 KHz for a ωF/2π= 5 GHz resonator in references: L. Frunzio, A. Wallraff, D.I. Schuster, J. Majer, R.J. Schoelkopf, in IEEE Transactions on Applied Superconductivity Proceedings of Applied Superconductivity Conference, Jacksonville, FL, 15, 860 (2004); P.K. Day, H.G. LeDuc, B.A. Mazin, A. Vayonakis, J. Zmuidzinas, Nature 425, 817 (2003), This results in a long photon lifetime of 31μs Google Scholar
  39. A. Kozhekin, G. Kurizki, B. Sherman, Phys. Rev. A 54, 3535 (1996) Google Scholar
  40. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000), p. 409 Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  1. 1.MIUR and Dipartimento di Scienze Fisiche ed Astronomiche, Palermo UniversityCNISM, CNR-INFMPalermoItaly
  2. 2.MIUR and Dipartimento di Scienze Fisiche ed AstronomichePalermo UniversityPalermoItaly

Personalised recommendations