The European Physical Journal Special Topics

, Volume 157, Issue 1, pp 157–166 | Cite as

Superdiffusion and encounter rates in diluted, low dimensional worlds

  • F. Bartumeus
  • P. Fernández
  • M. G.E. da Luz
  • J. Catalan
  • R. V. Solé
  • S. A. Levin


Rate limitation due to encounters is fundamental to many ecological interactions. Since encounter rate governs reaction rates, and thus, dynamics of systems, it deserves systematic study. In classical population biology, ecological dynamics rely on the assumption of perfectly mixed interacting entities (e.g., individuals, populations, etc.) in a spaceless world. The so-called mean field assumption assumes that encounter rates are driven exclusively by changes in the density of the interacting entities and not on how they are distributed or move in space. Therefore, the mean field assumption does not give any insight into relevant spatiotemporal statistical properties produced by the trajectories of moving entities through space. In the present study, we develop spatially explicit simulations of random walking particles (i.e., Lévy walkers) to evaluate encounter rate constraints beyond the mean field assumption. We show that encounter rate fluctuations are driven not only by physical aspects such as the size or the velocity of the interacting particles, but also by different motion patterns. In particular, superdiffusion phenomena might be relevant at low densities and/or low spatial dimensionality. Finally, we discuss potential adaptive responses of living organisms that may allow individuals to control how they diffuse through space and/or the spatial dimensions employed in the exploration process.


European Physical Journal Special Topic Encounter Rate Random Walk Model Target Density Ballistic Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. F. Bartumeus, Fractals 15, 151 (2007) Google Scholar
  2. F. Bartumeus, J. Catalan, E. Raposo, G. Viswanathan, M.G.E. da Luz, J. Theor. Biol. (2007) (submitted) Google Scholar
  3. F. Bartumeus, M.G.E. da Luz, G.M. Viswanathan, J. Catalan, Ecology 86, 3078 (2005) Google Scholar
  4. H. Berg (Princeton University Press, Princeton, 1983) Google Scholar
  5. J.M. Bullock, R.E. Kenward, R.S. Hails (eds.), Dispersal ecology (Blackwell Publishing, Cambridge University Press, Cambridge, 2002) Google Scholar
  6. M.M. Deksheniekis, P.L. Donaghay, J.M. Sullivan, J.E.B. Rines, T.R. Osborn, M.S. Twardowski, Marine Ecol. Prog. Ser. 223, 61 (2001) Google Scholar
  7. W. Feller (Wiley, New York, 1968) Google Scholar
  8. R.P. Feynman, R.B. Leighton, M. Sands, Vol. 1 (Addison-Wesley Publishing Co., Massachussets, 1963) Google Scholar
  9. G. Fryer, Proc. Zoo. Soc. Lond. 129, 1 (1957) Google Scholar
  10. G. Hoffmann, Behav. Ecol. Soc. 13, 81 (1983) Google Scholar
  11. P.A. Jumars, in Concepts in Biological Oceanography: An Interdisciplinar Primer (Oxford University Press, New York, 1993), pp. 23–33 Google Scholar
  12. J. Klafter, B.S. White, M. Levandowsky, in Biological Motion, edited by G. Hoffmann, W. Alt (Springer, Heidelberg, 1989), pp. 281–296 Google Scholar
  13. M. Levandowsky, B.S. White, F. Schuster, Acta Protozool. 36, 237 (1997) Google Scholar
  14. S.A. Levin, Ecology 73, 1943 (1992) Google Scholar
  15. S.A. Levin, R. Durrett, Phil. Trans. Roy. Soc. Lond. Ser. B 351, 1615 (1996) Google Scholar
  16. S.A. Levin, S.W. Pacala, in Spatial Ecology: The Role of Space in Population Dynamcis and Interspecifics Interactions, edited by D. Tilman, P. Kareiva, Vol. 30, Monographs in Population Biology (Princeton University Press, Princeton, NJ, 1997), pp. 271–295 Google Scholar
  17. P. Lévy (Gauthier-Villars, Paris, 1925) Google Scholar
  18. P. Lévy (Gauthier-Villars, Paris, 1937) Google Scholar
  19. B. Mandelbrot, Fractals: Form, Chance and Dimension (San Franciso, Fremman, W.H and Co., 1977) Google Scholar
  20. R. Margale, Omega (Barcelona, 1980) Google Scholar
  21. R. Margalef (Universisad de Barcelona, Barcelona, 1991) Google Scholar
  22. S.F. Nottingham, J. Ins. Phys. 34, 227 (1988) Google Scholar
  23. A. Okubo, Diffusion and Ecological Problems: Mathematical Models, 1983 (Springer-Verlag, Berlin, Heildelberg, New York, 1980) Google Scholar
  24. E.P. Raposo, S.V. Buldyrev, M.G.E. da Luz, M.C. Santos, H.E. Stanley, G.M. Viswanathan, Phys. Rev. Lett. 91, 2 (2003) Google Scholar
  25. M. Santos, E. Raposo, G.M. Viswanathan, M.G.E. da Luz, Europhys. Lett. 67, 734 (2004) Google Scholar
  26. R. Schabetsberger, C.D. Jersabeck, Ecography (2004), pp. 506–520 Google Scholar
  27. M. Shlesinger, G. Zaslavsky, U. Frisch (eds.), Lévy Flights and Related Topics in Physics (Springer-Verlag, Berlin, 1995) Google Scholar
  28. G. Viswanathan, S. Buldyrev, S. Havlin, M. da Luz, E. Raposo, H. Stanley, Nature 401, 911 (1999) Google Scholar
  29. P.A. Zollner, S.L. Lima, Anim. Behav. 80, 51 (1997) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  • F. Bartumeus
    • 1
  • P. Fernández
    • 2
  • M. G.E. da Luz
    • 3
  • J. Catalan
    • 4
  • R. V. Solé
    • 5
  • S. A. Levin
    • 1
  1. 1.Department of Ecology and Evolutionary Biology & Princeton Environmental InstitutePrincetonUSA
  2. 2.Departament de Llenguatges i Sistemes InformàticsUniversitat Politècnica de CatalunyaBarcelonaSpain
  3. 3.Departamento de FisicaUniversidade Federal do ParanaCuritiba-PRBrazil
  4. 4.Centre d'Estudis Avançats de Blanes (CEAB)GironaSpain
  5. 5.ICREA-Complex Systems Research Laboratory, Universitat Pompeu Fabra C/Dr. Aiguader 80BarcelonaSpain

Personalised recommendations