Skip to main content
Log in

Polymorphism in ferroic functional elements

Bridging length and time scales

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

The present study describes an approach for the scale-bridging modeling of ferroic materials as functional elements in micro- and nanoelectronic devices. Ferroic materials are characterized by temperature-dependent complex ordering phenomena of the internal magnetic, electronic, and structural degrees of freedom with several involved length and time scales. Hence, the modelling of such compounds is not straightforward, but relies on a combination of electronic-structure-based methods like ab-initio and density-functional schemes with classical particle-based approaches given by Monte-Carlo simulations with Ising, lattice-gas, or Heisenberg Hamiltonians, which incorporate material-specific parameters both from theory and experiment. The interplay of those methods is demonstrated for device concepts based on electroceramic materials like ferroelectrics and multiferroics, whose functionality is closely related with their propensity towards structural and magnetic polymorphism. In the present case, such scale-bridging techniques are employed to aid the development of an organic field effect transistor on a ferroelectric substrate generated by the self-assembly of field-sensitive molecules on the surfaces of ferroic oxides. Electronic-structure-based methods yield the microscopic properties of the oxide, the surface, the molecules, and the respective interactions. They are combined with classical particle-based methods on a scale-hopping basis. This combination allows to study the morphology evolution during the self-assembly of larger adsorbate arrays on the (defective) oxide surface and to investigate the interplay of low-temperature magnetic ordering phenomena with the ferroelectric functionality at higher temperatures in multiferroic oxides like the hexagonal manganites. The combination of density-functional data with classical continuum modelling also yielded a model Hamiltonian for the quick determination of the properties of a gate structure based on bio-functionalized carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • X.B. Lu, Z.G. Liu, X. Zhang, R. Huang, H.W. Zhou, X.P. Wang, B.-Y. Nguyen, J. Phys. D: Appl. Phys. 36, 3047 (2003)

    Google Scholar 

  • Y.H. Liu, X.M. Chen, J. Inorg. Mater. 18, 325 (2003)

    Google Scholar 

  • S. Ríos, A. Ruediger, A.Q. Jiang, J.F. Scott, H. Lu, Z. Chen, J. Phys.: Condens. Matter 15, L305 (2003)

  • R. Poyato, M.L. Calzada, L. Pardo, J. García López, M.A. Respaldiza, J. Eur. Ceram. Soc. 24, 1615 (2004)

  • X.H. Zhu, W. Peng, J. Miao, D.N. Zheng, Mater. Lett. 58, 2045 (2004)

    Google Scholar 

  • Y. Hotta, G.W.J. Hassink, T. Kawai, H. Tabata, Jpn. J. Appl. Phys. 42, 5908 (2003)

    Google Scholar 

  • K. Uchida, S. Tsuneyuki, Phys. Rev. B 68, 174107 (2003)

    Google Scholar 

  • M. Krcmar, C.L. Fu, Phys. Rev. B 68, 115404 (2003)

    Google Scholar 

  • C. Bungaro, K.M. Rabe, Phys. Rev. B 69, 184101 (2004)

    Google Scholar 

  • M.G. Stacchiotti, Appl. Phys. Lett. 84, 251 (2004)

    Google Scholar 

  • A. Antons, J.B. Neaton, K.M. Rabe, D. Vanderbilt, Phys. Rev. B 71, 024102 (2005)

  • S. Hyun, K. Char, Appl. Phys. Lett. 79, 254 (2001)

    Google Scholar 

  • M. Fiebig, Th. Lottermoser, M.K. Kneip, M. Bayer, J. Appl. Phys. 99, 08E302 (2006)

  • K. Szot, W. Speier, G. Bihlmayer, R. Waser, Nat. Mat. 5, 312 (2006)

    Google Scholar 

  • S. Dorfman, D. Fuks, E. Kotomin, Thin Solid Films 318, 65 (1998)

    Google Scholar 

  • L.M. Eng, F. Schlaphof, S. Trogisch, A. Roelofs, R. Waser, Ferroelectrics 251, 11 (2001)

    Google Scholar 

  • H. Zhang, Z. Yin, M.S. Zhang, Phys. Lett. A 310, 479 (2003)

    Google Scholar 

  • W.-C. Yang, B.J. Rodriguez, A. Gruverman, R.J. Nemanrich, Appl. Phys. Lett. 85, 2316 (2004)

    Google Scholar 

  • H. Kessler, H. Balke, J. Mech. Phys. Solids 54, 86 (2006)

  • R.O. Jones, O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989)

    Google Scholar 

  • H. Eschrig, The Fundamentals of Density Functional Theory (Gutenbergplatz, Leipzig, 2003)

  • G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002)

    Google Scholar 

  • R.M. Dreizsler, E.K.U. Gross, Density Functional Theory (Springer, Berlin, 1990)

  • R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989)

  • I. Popov, T. Kunze, S. Gemming, G. Seifert, Eur. Phys. J. D (accepted)

  • A.P. Sutton, R.W. Balluffi, Interfaces in Crystalline Materials (Clarendon Press, Oxford, 1995)

  • A.M. Stoneham, J.H. Harding, Nat. Mater. 2, 65 (2003)

    Google Scholar 

  • M.W. Finnis, Interatomic Forces in Condensed Matter (Oxford University Press, Oxford, 2003)

  • M. Radke de Cuba, S. Gemming, H. Emmerich, Eur. Phys. J. (this issue)

  • P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964)

    Google Scholar 

  • M. Levy, Phys. Rev. A 26, 1200 (1982)

    Google Scholar 

  • U. von Barth, L. Hedin, J. Phys. C 5, 1629 (1972)

    Google Scholar 

  • N.D. Mermin, Phys. Rev. 137, A1441 (1965)

  • S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980)

    Google Scholar 

  • O. Gunnarson, M. Jonson, B.I. Lundqvist, Phys. Rev. B 20, 3136 (1979)

    Google Scholar 

  • N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976)

  • R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)

    Google Scholar 

  • J.-M. Jancu, R. Scholz, F. Beltram, F. Bassani, Phys. Rev. B 57, 6493 (1998)

    Google Scholar 

  • R. Scholz, J.-M. Jancu, F. Bassani, Mat. Res. Soc. Symp. Proc. 491, 383 (1998)

    Google Scholar 

  • A. Di Carlo, Mat. Res. Soc. Symp. Proc. 491, 391 (1998)

    Google Scholar 

  • C.Z. Wang, K.M. Ho, C.T. Chan, Phys. Rev. Lett. 70, 611 (1993)

    Google Scholar 

  • P. Ordejón, D. Lebedenko, M. Menon, Phys. Rev. B 50, 5645 (1994)

    Google Scholar 

  • M. Menon, K.R. Subbaswamy, Phys. Rev. B 55, 9231 (1997)

    Google Scholar 

  • C.M. Goringe, D.R. Bowler, E. Hernandez, Rep. Prog. Phys. 60, 1447 (1997)

    Google Scholar 

  • J.M. Knaup, C. Köhler, M. Hoffmann, P.H. König, Th. Frauenheim, Eur. Phys. J. (this issue)

  • T.A. Niehaus, S. Suhai, F. Della Sala, P. Lugli, M. Elstner, G. Seifert, T. Frauenheim, Phys. Rev. B 63, 085108 (2001)

    Google Scholar 

  • A. Di Carlo, M. Gheorghe, P. Lugli, M. Sternberg, G. Seifert, T. Frauenheim, Physica B 314, 86 (2002)

    Google Scholar 

  • A.M. Stoneham, P.W. Tasker, J. Phys. C: Solid State Phys. 18, L543 (1985)

  • M.W. Finnis, Acta Metall. Mater. 40, S25 (1992)

  • N.D. Lang, W. Kohn, Phys. Rev. B 7, 3541 (1973)

    Google Scholar 

  • N.V. Smith, C.T. Chen, M. Weinert, Phys. Rev. B 40, 7565 (1989)

    Google Scholar 

  • D.M. Duffy, J.H. Harding, A.M. Stoneham, Acta Metall. Mater. 40, S11 (1992)

  • D.M. Duffy, J.H. Harding, A.M. Stoneham, Phil. Mag. A 67, 865 (1993)

    Google Scholar 

  • A.M. Stoneham, P.W. Tasker, Phil. Mag. B 55, 237 (1987)

    Google Scholar 

  • U. Schoenberger, O.K. Andersen, M. Methfessel, Acta Metall. Mater. 40, S1 (1992)

  • J.R. Smith, T. Hong, D.J. Srolovitz, Phys. Rev. Lett. 72, 4021 (1994)

    Google Scholar 

  • J. Purton, S.C. Parker, D.W. Bullett, J. Phys. Condens. Matter 9, 5709 (1997)

    Google Scholar 

  • M.S. Daw, M.I. Baskes, Phys. Rev. Lett. 50, 1285 (1983)

    Google Scholar 

  • M.S. Daw, M.I. Baskes, Phys. Rev. B 29, 6443 (1984)

    Google Scholar 

  • M.W. Finnis, J.E. Sinclair, Phil. Mag. A 50, 45 (1984)

    Google Scholar 

  • J.A. Moriarty, R. Phillips, Phys. Rev. Lett. 66, 3036 (1990)

    Google Scholar 

  • J. Tersoff, Phys. Rev. B 38, 9902 (1988)

    Google Scholar 

  • T. Ochs, O. Beck, C. Elsässer, B. Meyer, Phil. Mag. A 80, 351 (2000)

    Google Scholar 

  • J.H. Harding, Rep. Prog. Phys. 53, 1403 (1990)

    Google Scholar 

  • B.G. Dick, A.W. Overhauser, Phys. Rev. 112, 90 (1958)

    Google Scholar 

  • C. Elsässer, A.G. Marinopoulos, Acta Mater. 49, 2951 (2001)

    Google Scholar 

  • E. Heifets, E.A. Kotomin, R. Orlando, J. Phys. Condens. Matter 8, 6577 (1996)

    Google Scholar 

  • K. Iwahori, S. Watanabe, T. Komeda, M. Kawai, A. Saito, Y. Kuwahara, M. Aono, Jpn. J. Appl. Phys. 38, 3946 (1999)

    Google Scholar 

  • H.B. Moon, J.H. Cho, J.S. Ahn, J. Kor. Phys. Soc. 47, S251 (2005)

  • www.abinit.org; the ABINIT code is a common project of the Universite Catholique de Louvain, Corning Inc. and other contributors

  • M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, Th. Frauenheim, S. Suhai, G. Seifert, Phys. Rev. B 58, 7260 (1998)

    Google Scholar 

  • S. Gemming, M. Schreiber, Chem. Phys. 309, 3 (2005)

    Google Scholar 

  • S. Gemming, G. Seifert, Acta Mater. (2006)

  • N.A. Spaldin, M. Fiebig, Science 309, 391 (2005)

  • A.M. Kadomtseva, Yu. F. Popov, A.P. Pyatakov, G.P. Vorobev, A.K. Zvezdin, D. Viehland, Phase Trans. 79, 1019 (2006)

    Google Scholar 

  • K. Sawada, N. Nagaosa, Phys. Rev. Lett. 95, 237402 (2005)

    Google Scholar 

  • K. Koepernik, H. Eschrig, Phys. Rev. B 59, 1743 (1999)

    Google Scholar 

  • I. Opahle, K. Koepernik, H. Eschrig, Phys. Rev. B 60, 14035 (1999)

    Google Scholar 

  • H. Eschrig, K. Koepernik, I. Chaplygin, J. Solid State Chem. 176, 482 (2003)

    Google Scholar 

  • R.C. Rai, J. Cao, S. Brown, J.L. Musfeldt, D. Kasinathan, D.J. Singh, G. Lawes, N. Rogado, R.J. Cava, X. Wei, Phys. Rev. B 74, 235101 (2006)

    Google Scholar 

  • P.W. Anderson, in Magnetism, Vol. 1, edited by G.T. Rado and H. Suhl (Academic Press, New York, 1963), p. 25

  • L. Capriotti, A. Cuccoli, V. Tognetti, P. Verruchi, R. Vaia, Phys. Rev. B 60, 7299 (1999)

  • L. Capriotti, R. Vaia, A. Cuccoli, V. Tognetti, Phys. Rev. B 58, 273 (1998)

    Google Scholar 

  • Gaussian; Gaussian 03, Revision C.02, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople (Gaussian Inc., Wallingford CT, 2004)

  • J. Fabian, Theo. Chem. Acc. 106, 199 (2001)

    Google Scholar 

  • M. Laicini, P. Spearman, S. Tavazzi, A. Borghesi, Phys. Rev. B 71, 045212 (2005)

    Google Scholar 

  • A. Ozawa, K. Takmiya, T. Otsubo, T. Kobayashi, Chem. Phys. Lett. 409, 224 (2005)

    Google Scholar 

  • D. Rohde, L. Dunsch, A. Tabet, H. Hartmann, J. Phys. Chem. B 110, 8223 (2006)

    Google Scholar 

  • Y. Gao, C.G. Liu, Y.S. Liang, J. Phys. Chem. A 106, 5380 (2002)

    Google Scholar 

  • S.A. McGill, S.G. Rao, P. Manandhar, P. Xiong, S. Hong, Appl. Phys. Lett. 89, 163123 (2006)

    Google Scholar 

  • Z. Guo, P.J. Sadler, S.C. Tsang, Adv. Mater. 10, 701 (1998)

    Google Scholar 

  • D. Nepal, J.-I. Sohn, W.K. Aicher, S. Lee, K.E. Geckeler, Biomacromolecules 6, 2919 (2005)

  • S.R. Vogel, M.M. Kappes, F. Hennrich, C. Richert, Chem. Eur. J. 13, 1815 (2007)

    Google Scholar 

  • T. Okada, T. Kaneko, R. Hatekeyama, K. Tohji, Chem. Phys. Lett. 417, 288 (2006)

    Google Scholar 

  • M.J. O'Connell, P. Boul, L.M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, J. Tour, K.D. Ausman, R.E. Smalley, Chem. Phys. Lett. 342, 265 (2001)

    Google Scholar 

  • M. Zheng, A. Jagota, E.D. Semke, B.A. Diner, R.S. Mclean, S.R. Lustig, R.E. Richardson, N.G. Tassi, Nat. Mater. 2, 338 (2003)

  • X. Huang, R.S. Mclean, M. Zheng, Anal. Chem. 77, 6225 (2005)

    Google Scholar 

  • A.N. Enyashin, S. Gemming, G. Seifert, Nanotechnology (accepted)

  • S.R. Lustig, A. Jagota, C. Khripin, M. Zheng, J. Phys. Chem. B 109, 2559 (2005)

    Google Scholar 

  • H. Gao, Y. Kong, D. Cui, C.S. Ozkan, Nano Lett. 3, 471 (2003)

  • E.Y. Lau, F.C. Lightstone, M.E. Colvin, Chem. Phys. Lett. 412, 82 (2005)

    Google Scholar 

  • G. Lu, P. Maragakis, E. Kaxiras, Nano Lett. 5, 897 (2005)

    Google Scholar 

  • A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard III, W.M. Skiff, J. Am. Chem. Soc. 114, 10024 (1992)

  • J. Tersoff, R.S. Ruoff, Phys. Rev. Lett. 73, 676 (1994)

    Google Scholar 

  • M. Monthioux, B.W. Smith, B. Burteaux, A. Claye, J.E. Fischer, D.E. Luzzi, Carbon 39, 1251 (2001)

    Google Scholar 

  • M. Endo, H. Muramatsu, T. Hayashi, Y.A. Kim, M. Terrones, M.S. Dresselhaus, Nature 433, 476 (2005)

    Google Scholar 

  • N. Metropolis, S. Ulam, J. Am. Stat. Assoc. 44, 335 (1949)

    Google Scholar 

  • J. Hoshen, R. Kopelman, Phys. Rev. B 14, 3438 (1976)

    Google Scholar 

  • R. Scholz, A.Y. Kobitski, D.R.T. Zahn, M. Schreiber, Phys. Rev. B 72, 245208 (2005); H.L. Skriver, N.M. Rosengaard, Phys. Rev. B 46, 7157 (1992)

    Google Scholar 

  • L. Onsager, Phys. Rev. 65, 117 (1944)

    Google Scholar 

  • C.N. Yang, Phys. Rev. 85, 808 (1952)

    Google Scholar 

  • C. Domb, P. Sykes, Proc. R. Soc. Lond. A 240, 214 (1957)

    Google Scholar 

  • C. Loppacher, U. Zerweck, L.M. Eng, S. Gemming, G. Seifert, C. Olbrich, K. Morawetz, M. Schreiber, Nanotechnology 17, 1568 (2006)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gemming, S., Luschtinetz, R., Chaplygin, I. et al. Polymorphism in ferroic functional elements. Eur. Phys. J. Spec. Top. 149, 145–171 (2007). https://doi.org/10.1140/epjst/e2007-00248-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2007-00248-x

Keywords

Navigation