Skip to main content
Log in

Finding polymorphic structures during vicinal surface growth

From island nucleation to step-flow instabilities

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

A hybrid scheme is developed to describe vicinal surface growth during epitaxy on two different time and length scales. For this purpose this algorithm combines two modules based on a continuum and an atomistic approach. The continuum module is realized by a phase-field-model which traces back to the Burton–Cabrera–Frank theory, the atomistic module is based on the anisotropic Ising model which is mapped onto a lattice-gas model. The latter provides thermal density fluctuations resulting in adatom clustering. With increasing temperature the probability for island nucleation on the terraces decreases according to 1-p where p is an Arrhenius-type activation probability which prevents clusters from becoming islands. Within this framework it is possible to find the transition from a rough surface at low temperatures to an evenly stepped surface at high temperatures where slight step meandering is observed. Furthermore two competing mechanisms of step bunching are investigated within this scale bridging algorithm: alternating anisotropic diffusion and different Ehrlich–Schwoebel barriers at the step edges. It is shown that a simulation of step bunching displaying the full variety of phenomena observed in experiments can only be achieved by the consideration of different time and length scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • P. Tejedor, P. Šmilauer, B.A. Joyce, Surf. Sci. 424, L309 (1999)

  • P. Tejedor, M.L. Crespillo, B.A. Joyce, Mater. Sci. Eng. C 26, 852 (2006)

    Google Scholar 

  • B.Z. Nosho, B.R. Bennett, E.H. Aifer, M. Goldenberg, J. Cryst. Growth 236, 155 (2002)

    Google Scholar 

  • D.D. Vvedensky, S. Clarke, K.J. Hugill, M.R. Wilby, T. Kawamura, J. Cryst. Growth 99, 54 (1990)

    Google Scholar 

  • V.I. Trofimov, H.S. Park, Thin Solid Films 428, 170 (2003)

    Google Scholar 

  • Y. Horikoshi, Handbook of Crystal Growth, Vol. 3, edited by D.T.J. Hurle (Elsevier Science B.V., Amsterdam, 1994), p. 691

  • G. Ehrlich, F.G. Hudda, J. Chem. Phys. 44, 1039 (1966)

    Google Scholar 

  • R.L. Schwoebel, E.J. Shipsey, J. Appl. Phys. 37, 3682 (1966)

    Google Scholar 

  • J. Mysliveček, C. Schelling, F. Schäffler, G. Springholz, P. Šmilauer, J. Krug, B. Voigtländer, Surf. Sci. 520, 193 (2002)

    Google Scholar 

  • J. Mysliveček, C. Schelling, F. Schäffler, G. Springholz, P. Šmilauer, J. Krug, B. Voigtländer, Mat. Res. Soc. Symp. Proc. 749 (2003)

  • S. Clarke, M.R. Wilby, D.D. Vvedensky, Surf. Sci. 255, 91 (1991)

    Google Scholar 

  • B. Voigtländer, T. Weber, P. Šmilauer, D.E. Wolf, Phys. Rev. Lett. 81, 2164 (1997)

    Google Scholar 

  • W.K. Burton, N. Cabrera, F.C. Frank, Philos. Trans. R. Soc. London. Ser. A 243, 299 (1951)

    Google Scholar 

  • G.S. Bales, A. Zangwill, Phys. Rev. B 41, 5500 (1990)

    Google Scholar 

  • H. Emmerich, Phys. Rev. B 65, 233406 (2002)

    Google Scholar 

  • H. Emmerich, Ch. Eck, Cont. Mech. Thermodyn. 17, 373 (2006)

    Google Scholar 

  • T.P. Schulze, P. Smereka, E. Weinan, J. Comput. Phys. 189, 197 (2003)

    Google Scholar 

  • T.P. Schulze, J. Cryst. Growth 263, 605 (2004)

    Google Scholar 

  • G. Russo, L.M. Sander, P. Smereka, Phys. Rev. B 69, 121406(R) (2004)

  • M.H. Radke de Cuba, H. Emmerich, S. Gemming, Physica D (submitted)

  • M.H. Radke de Cuba, H. Emmerich, S. Gemming, Z. Anorg. Allg. Chem. 632, 2144 (2006)

    Google Scholar 

  • H. Emmerich, The Diffuse Interface Approach in Material Science: Thermodynamic Concepts and Applications of Phase-Field Models, Lect. Notes Phys. 73 (Springer, Berlin, 2003)

  • H. Emmerich, Cont. Mech. Thermodyn. 15, 197 (2003)

    Google Scholar 

  • T. Ihle, H. Müller-Krumbhaar, Phys. Rev. Lett. 70, 3083 (1993)

    Google Scholar 

  • F. Liu, H. Metiu, Phys. Rev. E 49, 2601 (1994)

    Google Scholar 

  • A. Karma, M. Plapp, Phys. Rev. Lett. 81, 4444 (1998)

    Google Scholar 

  • E. Ising, Z. Phys. 31, 253 (1925)

    Google Scholar 

  • Ch. Loppacher, U. Zerweck, L.M. Eng, S. Gemming, G. Seifert, C. Olbrich, K. Morawetz, M. Schreiber, Nanotechnology 17, 1568 (2006)

  • C. Olbrich, Bachelor Thesis, TU Chemnitz, 2004

  • N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)

    Google Scholar 

  • E. Stoll, K. Binder, T. Schneider, Phys. Rev. B 8, 3266 (1973)

    Google Scholar 

  • J. Hoshen, R. Kopelman, Phys. Rev. B 14, 3438 (1976)

    Google Scholar 

  • R.-F. Xiao, J.I.D. Alexander, F. Rosenberger, Phys. Rev. A 39, 6397 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radke de Cuba, M., Emmerich, H. & Gemming, S. Finding polymorphic structures during vicinal surface growth. Eur. Phys. J. Spec. Top. 149, 43–56 (2007). https://doi.org/10.1140/epjst/e2007-00243-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2007-00243-3

Keywords

Navigation