Skip to main content
Log in

Computation of solidification problems with hydrodynamic convection resolving energetic anisotropies at the microscale quantitatively

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

In this work we propose a new numerical approach to solve the solidification of microstructures from a pure melt including hydrodynamic effects in the molten phase. The model is based on the classical sharp-interface model, i.e the solid–liquid interface is tracked and latent heat is released. An enhanced scheme is employed to solve fluid flow in the melt. The no-slip condition is applied on the interface by enforcing the velocities in the solid phase to be zero. The morphology evolution of the solidifying crystal microstructure under the influence of convection is compared with an existing morphology diagram for pure diffusion controlled growth (see Brener et al. [1]). The peculiarity of our approach is that it models the physical anisotropies along the solid–liquid interface with high accuracy. This allows us to report changes in the morphology diagram given by Brener et al. [1] due to the influence of forced flow. Moreover, we present some results on the scaling of the dendritic tip in such cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • E. Brener, H. Müller-Krumbhaar, D. Temkin, Europhys. Lett. 17, 535 (1992)

    Google Scholar 

  • M.F. Tomé, S. McKee, J. Comp. Phys. 110, 171 (1994)

    Google Scholar 

  • T. Ihle, H. Müller-Krumbhaar, Phys. Rev. E 49, 2972 (1994)

    Google Scholar 

  • B.T. Murray, A.A. Wheeler, M.E. Glicksman, J. Cryst. Growth 154, 386 (1995)

    Google Scholar 

  • I. Stalder, Diss. ETH Zuerich, No. 13906, 2000

  • For a review see E. Brener, V. Melnikov, Adv. Phys. 40, 53 (1991)

    Google Scholar 

  • A.A. Wheeler, W.J. Bottinger, G.B. McFadden, Phys. Rev. A 45, 7424 (1992)

    Google Scholar 

  • A.A. Wheeler, B.T. Murray, R.J. Schaefer, Physica D 66, 243 (1993)

    Google Scholar 

  • R. Kobayashi, Physica D 63, 410 (1993)

  • C. Beckermann, R. Viskanta, Appl. Mech. Rev. 46, 1 (1993)

    Google Scholar 

  • A. Karma, W.-J. Rappel, Phys. Rev. E 53, 3017 (1996)

    Google Scholar 

  • D. Juric, G. Tryggvason, J. Comp. Phys. 123, 127 (1996)

    Google Scholar 

  • A. Karma, W.-J. Rappel, Phys. Rev. E 57, 4323 (1998)

    Google Scholar 

  • M.E. Glicksman, M.B. Koss, E.A. Winsa, Phys. Rev. Lett. 73, 573 (1994)

    Google Scholar 

  • X. Tong, C. Beckermann, A. Karma, Q. Li, Phys. Rev. E 63, 061601 (2001)

    Google Scholar 

  • C. Beckermann, H.-J. Diepers, I. Steinbach, A. Karma, X. Tong, J. Comp. Phys. 154, 468 (1999)

    Google Scholar 

  • R. Tönhardt, G. Amberg, J. Cryst. Growth 194, 406 (1998)

    Google Scholar 

  • R. Tönhardt, G. Amberg, J. Cryst. Growth 213, 161 (2000)

    Google Scholar 

  • D. Medvedev, K. Kassner, J. Cryst. Growth 275, 1496 (2005)

    Google Scholar 

  • D. Medvedev, K. Kassner, Phys. Rev. E 72, 056703 (2005)

    Google Scholar 

  • D. Medvedev, T. Fischaleck, K. Kassner, Phys. Rev. E 74, 031606 (2006)

    Google Scholar 

  • J.S. Langer, Rev. Mod. Phys. 52, 1 (1980)

    Google Scholar 

  • C. Fletcher, 2nd edn., Vol. I–II (Berlin, Springer-Verlag, 1991)

  • M. Griebel, T. Dornseifer, T. Neunhoeffer (SIAM, Philadelphia, 1997)

  • N. Al-Rawahi, G. Tryggvason, J. Comp. Phys. 180, 471 (2002)

    Google Scholar 

  • G.P. Ivantsov, Dokl. Akad. Nauk. SSSR 58, 567 (1947)

    Google Scholar 

  • J.E. Welch, F.H. Harlow, J.P. Shannon, B.J. Daly, Los Alamos Scientific Lab. Report LA-3425, Los Alamos, 1996

  • A.A. Amsden, F.H. Harlow, J. Comp. Phys. 6, 332 (1970)

    Google Scholar 

  • R. Siquieri, H. Emmerich, M. Jurgk (in preparation)

  • C.Y. Wang, C. Beckermann, Metall. Mater. Trans. A 24, 2787 (1993); Mater. Sci. Eng. 171, 199 (1993); Metall. Mater. Trans. A 25, 1081 (1994)

  • S.K. Dash, W.N. Gill, Int. J. Heat Mass Transfer 27, 1345 (1984)

    Google Scholar 

  • D.A. Saville, P.J. Beaghton, Phys. Rev. A 37, 3423 (1988)

    Google Scholar 

  • M. Ben Amar, Ph. Bouissou, P. Pelce, J. Cryst. Growth 92, 97 (1988)

  • Ph. Bouissou, B. Perrin, P. Tabeling, Phys. Rev. A 40, 509 (1989)

    Google Scholar 

  • M. Benamar, Y. Pomeau, C. R. Acad. Sci. Paris 308, 907 (1989)

    Google Scholar 

  • Ph. Bouissou, P. Pelce, Phys. Rev. A 40, 6673 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siquieri, R., Emmerich, H. & Jurgk, M. Computation of solidification problems with hydrodynamic convection resolving energetic anisotropies at the microscale quantitatively. Eur. Phys. J. Spec. Top. 149, 27–41 (2007). https://doi.org/10.1140/epjst/e2007-00242-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2007-00242-4

Keywords

Navigation