Skip to main content
Log in

QHE and far infra-red properties of bilayer graphene in a strong magnetic field

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

We describe the quantum Hall effect (QHE) and far infra-red (FIR) absorption properties of bilayer graphene in a strong magnetic field and contrast them with the weak field regime. This includes a derivation of the effective low energy Hamiltonian for this system and the consequences of this Hamiltonian for the sequencing of the Landau levels in the material: The form of this effective Hamiltonian gives rise to the presence of a level with doubled degeneracy at zero energy. The effect of a potential difference between the layer of a bilayer is also investigated. It is found that there is a density-dependent gap near the K points in the band structure. The consequences of this gap on the QHE are then described. Also, the magneto-absorption spectrum is investigated and an experiment proposed to distinguish between model ground states of the bilayer quantum Hall effect system based on the different absorption characteristics of right-handed and left-handed polarisation of FIR light. Finally, the effects of trigonal warping are taken into account in the absorption picture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • K.S. Novoselov et al., Proc. Natl. Acad. Sci. USA 102, 10451 (2005); J.S. Bunch et al., Nano Lett. 5, 287 (2005); C. Berger et al., J. Phys. Chem. B 108, 19912 (2004)

  • J.W. McClure, Phys. Rev. 104, 666 (1956); Y. Zheng, T. Ando, Phys. Rev. B 65, 245420 (2002); V.P. Gusynin, S.G. Sharapov, Phys. Rev. Lett. 95, 146801 (2005); A.H. Castro Neto, F. Guinea, N.M.R. Peres, Phys. Rev. B 73, 205408 (2006); N.M.R. Peres, F. Guinea, A.H. Castro Neto, Phys. Rev. B 73, 125411 (2006)

  • E. McCann, D.S.L. Abergel (Springer-Verlag, 2007)

  • E. McCann, V.I. Fal'ko, Phys. Rev. Lett. 96, 086805 (2006)

    Google Scholar 

  • K.S. Novoselov et al., Science 306, 666 (2004)

  • K.S. Novoselov et al., Nature 438, 197 (2005)

  • K.S. Novoselov et al., Nat. Phys. 2, 177 (2006)

  • Y. Zhang, J.P. Small, M.E.S. Amori, P. Kim, Phys. Rev. Lett. 94, 176803 (2005); Nature 438, 201 (2005)

    Google Scholar 

  • K.S. Novoselov, E. McCann, S.V. Morozov, V.I. Fal'ko, M.I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, A.K. Geim, Nat. Phys. 2, 177 (2006)

  • E. McCann, Phys. Rev. B 74, 161403 (2006)

    Google Scholar 

  • D.S.L. Abergel, V.I. Fal'ko, cond-mat/0610673 (2006)

  • R.E. Prange, S.M. Girvin, The Quantum Hall Effect (Springer-Verlag, New York, 1986)

  • M.L. Sadowski, G. Martinez, M. Potemski, C. Berger, W.A. de Heer, Phys. Rev. Lett. 97, 266405 (2006)

    Google Scholar 

  • C.L. Lu, C.P. Chang, Y.C. Huang, R.B. Chen, M.L. Lin, Phys. Rev. B 73, 144427 (2006); J. Nilsson, A.H. Castro Neto, N.M.R. Peres, F. Guinea, Phys. Rev. B 73, 214418 (2006); M. Koshino, T. Ando, Phys. Rev. B 73, 245403 (2006); F. Guinea, A.H. Castro Neto, N. Peres, Phys. Rev. B 73, 245426 (2006); B. Partoens, F. Peeters, Phys. Rev. B 74, 075404 (2006); S. Latil, L. Henrard, Phys. Rev. Lett. 97, 036803 (2006)

    Google Scholar 

  • F. Léonard, J. Tersoff, Appl. Phys. Lett. 81, 4835 (2002)

    Google Scholar 

  • K.W.K. Shung, Phys. Rev. B 34, 979 (1986); E.A. Taft, H.R. Philipp, Phys. Rev. 138, A197 (1965)

    Google Scholar 

  • T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Science 313, 951 (2006)

    Google Scholar 

  • M.S. Dresselhaus, G. Dresselhaus, Adv. Phys. 51, 1 (2002); R.C. Tatar, S. Rabii, Phys. Rev. B 25, 4126 (1982); J.-C. Charlier, X. Gonze, J.-P. Michenaud, Phys. Rev. B 43, 4579 (1991); We use \(\gamma _{1}=0.39\,{\rm eV}, c_0 = 3.35\,{\rm \AA}, \varepsilon_r = 1\) and v=8.0×105ms-1 bib:Novo05

  • G. Dresselhaus, Phys. Rev. B 10, 3602 (1974); K. Nakao, J. Phys. Soc. Jpn. 40, 761 (1976); M. Inoue, J. Phys. Soc. Jpn. 17, 808 (1962); O.P. Gupta, P.R. Wallace, Phys. Stat. Sol. B 54, 53 (1972)

  • E.V. Castro et al., cond-mat/0611342

  • The true value of the gap between the conduction and valence band, occuring at p ≠0, is \(\tilde{{\rm \Delta}} = |{\rm \Delta} |\gamma_1 / (\gamma_1^2 + {\rm \Delta}^2)^{1/2} \). For huge asymmetry |Δ | ≫γ1, the gap saturates at \(\tilde{{\rm \Delta}} \approx \gamma_1\) although for modest asymmetry |Δ | ≪γ1, as considered throughout this paper, we have \(\tilde{{\rm \Delta}} \approx |{\rm \Delta} |\)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abergel, D., McCann, E. & Fal'ko, V. QHE and far infra-red properties of bilayer graphene in a strong magnetic field. Eur. Phys. J. Spec. Top. 148, 105–115 (2007). https://doi.org/10.1140/epjst/e2007-00230-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2007-00230-8

Keywords

Navigation