Skip to main content
Log in

The low energy electronic band structure of bilayer graphene

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

We employ the tight binding model to describe the electronic band structure of bilayer graphene and we explain how the optical absorption coefficient of a bilayer is influenced by the presence and dispersion of the electronic bands, in contrast to the featureless absorption coefficient of monolayer graphene. We show that the effective low energy Hamiltonian is dominated by chiral quasiparticles with a parabolic dispersion and Berry phase 2π. Layer asymmetry produces a gap in the spectrum but, by comparing the charging energy with the single particle energy, we demonstrate that an undoped, gapless bilayer is stable with respect to the spontaneous opening of a gap. Then, we describe the control of a gap in the presence of an external gate voltage. Finally, we take into account the influence of trigonal warping which produces a Lifshitz transition at very low energy, breaking the isoenergetic line about each valley into four pockets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

  • K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005); Y.B. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)

  • D. DiVincenzo, E. Mele, Phys. Rev. B 29, 1685 (1984)

    Google Scholar 

  • G.W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984)

    Google Scholar 

  • F.D.M. Haldane, Phys. Rev. Lett. 61, 2015 (1988); Y. Zheng, T. Ando, Phys. Rev. B 65, 245420 (2002); V.P. Gusynin, S.G. Sharapov, Phys. Rev. Lett. 95, 146801 (2005); N.M.R. Peres, F. Guinea, A.H. Castro Neto, Phys. Rev. B 73, 125411 (2006); A.H. Castro Neto, F. Guinea, N.M.R. Peres, Phys. Rev. B 73, 205408 (2006)

  • T. Ando, T. Nakanishi, R. Saito, J. Phys. Soc. Jpn. 67, 2857 (1998)

    Google Scholar 

  • E. McCann, V.I. Fal'ko, Phys. Rev. Lett. 96, 086805 (2006)

    Google Scholar 

  • K.S. Novoselov, E. McCann, S.V. Morozov, V.I. Fal'ko, M.I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, A.K. Geim, Nat. Phys. 2, 177 (2006)

  • T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Science 313, 951 (2006)

    Google Scholar 

  • S.B. Trickey, G.H.F. Diercksen, F. Müller-Plathe, Astrophys. J. 336, L37 (1989); S.B. Trickey, F. Müller-Plathe, G.H.F. Diercksen, J.C. Boettger, Phys. Rev. B 45, 4460 (1992)

    Google Scholar 

  • S. Latil, L. Henrard, Phys. Rev. Lett. 97, 036803 (2006)

    Google Scholar 

  • H. Min, B.R. Sahu, S.K. Banerjee, A.H. MacDonald, cond-mat/0612236

  • K. Yoshizawa, T. Kato, T. Yamabe, J. Chem. Phys. 105, 2099 (1996); T. Yumura, K. Yoshizawa, Chem. Phys. 279, 111 (2002)

    Google Scholar 

  • C.L. Lu, C.P. Chang, Y.C. Huang, R.B. Chen, M.L. Lin, Phys. Rev. B 73, 144427 (2006); J. Nilsson, A.H. Castro Neto, N.M.R. Peres, F. Guinea, Phys. Rev. B 73, 214418 (2006); M. Koshino, T. Ando, Phys. Rev. B 73, 245403 (2006); F. Guinea, A.H. Castro Neto, N.M.R. Peres, Phys. Rev. B 73, 245426 (2006); M.I. Katsnelson, Eur. Phys. J. B 51, 157 (2006); 52, 151 (2006)

    Google Scholar 

  • B. Partoens, F.M. Peeters, Phys. Rev. B 74, 075404 (2006)

    Google Scholar 

  • E. McCann, Phys. Rev. B 74, 161403 (2006)

    Google Scholar 

  • E.V. Castro, K.S. Novoselov, S.V. Morozov, N.M.R. Peres, J.M.B. Lopes dos Santos, J. Nilsson, F. Guinea, A.K. Geim, A.H. Castro Neto, cond-mat/0611342

  • J. Nilsson, A.H. Castro Neto, F. Guinea, N.M.R. Peres, Phys. Rev. Lett. 97, 266801 (2006)

    Google Scholar 

  • D.S.L. Abergel, V.I. Fal'ko, cond-mat/0610673

  • P.R. Wallace, Phys. Rev. 71, 622 (1947); J.C. Slonczewski, P.R. Weiss, Phys. Rev. 109, 272 (1958)

    Google Scholar 

  • M.S. Dresselhaus, G. Dresselhaus, Adv. Phys. 51, 1 (2002); R.C. Tatar, S. Rabii, Phys. Rev. B 25, 4126 (1982); J.-C. Charlier, X. Gonze, J.-P. Michenaud, Phys. Rev. B 43, 4579 (1991)

  • We use γ1=0.39eV [9, 21], v3/v = 0.1, v=8.0×105m/s [2], c0 = 3.35 Å, and εr = 1

  • Corners of the hexagonal Brilloin zone are \(\mathbf{K} _{\xi }=\xi ({\textstyle\frac{4}{3}}\pi a^{-1},0)\), where ξ=±1 and a is the lattice constant

  • V. Gusynin, S. Sharapov, J. Carbotte, Phys. Rev. Lett. 96, 256802 (2006); V. Gusynin, S. Sharapov, Phys. Rev. B 73, 245411 (2006)

    Google Scholar 

  • L. Falkovsky, A. Varlamov, cond-mat/0606800

  • J. Cserti, Phys. Rev. B 75, 033405 (2007)

    Google Scholar 

  • K. Nomura, A.H. MacDonald, Phys. Rev. Lett. 96, 256602 (2006); T. Ando, J. Phys. Soc. Jpn. 75, 074716 (2006); V.V. Cheianov, V.I. Fal'ko, Phys. Rev. Lett. 97, 226801 (2006)

  • In contrast to monolayer graphene, a weak absorption of light polarised perpendicular to the bilayer is possible. A pertubation σz e Ez d / 2 distinguishes between the on-site energies in the top and bottom layers separated by spacing d, which leads to weak absorption g2z=(2πe2/ħc)f2z, \( f_{2}^{z} = %\displaystyle a_{z}^{2}{\rm \Omega} %\displaystyle \left[ \tfrac{1}{{\rm \Omega} +1} + %\displaystyle \tfrac{\theta ({\rm \Omega} -2)}{{\rm \Omega} -1}\right] ,\quad {\rm \Omega} \equiv \hbar {\rm \omega} / \gamma _{1}; \) \(f_{2}^{z}(B,\omega )=%\displaystyle \frac{a_{z}^{2}}{\pi}\sum_{n\geq 2}\frac{\tau \omega }{ \tau ^{2}\omega _{c}^{2}(\frac{\omega } {\omega_{c}}-2\sqrt{n^{2}-n})^{2}+1} \) where the constant az1d/2ħv∼10-1, and the magneto-absorption spectrum at \(\hbar \omega < \frac{1}{4}\gamma _{1}\) involves εn-→εn+ inter-LL transitions

  • For \(\hbar \omega \ll \frac{1}{4} \gamma_{1}\) this result transforms into f2=1 suggested by J. Cserti [26] for the microwave absorption in bilayer graphene. However one should be aware that equation (6) and conclusions of [26] cannot be applied to \( \hbar \omega \lesssim \epsilon_{\mathrm{L}} = \frac{1}{4} \gamma_{1} (\upsilon_{3} / \upsilon)^{2} \sim 1\)meV. At epsilonF ≈epsilonL, trigonal warping term causes a Lifshitz transition in the topology of the Fermi line in each valley as explained in section 6

  • F. Léonard, J. Tersoff, Appl. Phys. Lett. 81, 4835 (2002)

    Google Scholar 

  • K.W.-K. Shung, Phys. Rev. B 34, 979 (1986); E.A. Taft, H.R. Philipp, Phys. Rev. 138, A197 (1965)

    Google Scholar 

  • G. Dresselhaus, Phys. Rev. B 10, 3602 (1974); K. Nakao, J. Phys. Soc. Jpn. 40, 761 (1976); M. Inoue, J. Phys. Soc. Jpn. 17, 808 (1962); O.P. Gupta, P.R. Wallace, Phys. Stat. Sol. B 54, 53 (1972)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCann, E., Abergel, D. & Fal'ko, V. The low energy electronic band structure of bilayer graphene. Eur. Phys. J. Spec. Top. 148, 91–103 (2007). https://doi.org/10.1140/epjst/e2007-00229-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2007-00229-1

Keywords

Navigation