The European Physical Journal Special Topics

, Volume 148, Issue 1, pp 63–72 | Cite as

Conductivity of disordered graphene at half filling

  • P. M. Ostrovsky
  • I. V. Gornyi
  • A. D. Mirlin


We study electron transport properties of a monoatomic graphite layer (graphene) with different types of disorder at half filling. We show that the transport properties of the system depend strongly on the symmetry of disorder. We find that the localization is ineffective if the randomness preserves one of the chiral symmetries of the clean Hamiltonian or does not mix valleys. We obtain the exact value of minimal conductivity 4e2/πh in the case of chiral disorder. For long-range disorder (decoupled valleys), we derive the effective field theory. In the case of smooth random potential, it is a symplectic-class sigma-model including a topological term with θ=π. As a consequence, the system is at a quantum critical point with a universal value of the conductivity of the order of e2/h. When the effective time reversal symmetry is broken, the symmetry class becomes unitary, and the conductivity acquires the value characteristic for the quantum Hall transition.


European Physical Journal Special Topic Chiral Symmetry Quantum Critical Point Symmetry Class Nonlinear Sigma Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. P.W. Anderson, Phys. Rev. 109, 1492 (1958) Google Scholar
  2. E. Abrahams, P.W. Anderson, D.C. Licciardello, T.V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979) Google Scholar
  3. L.P. Gorkov, A.I. Larkin, D.E. Khmelnitskii, Pis'ma Zh. Eksp. Teor. Fiz. 30, 248 (1979); JETP Lett. 30, 228 (1979) Google Scholar
  4. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004) Google Scholar
  5. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005) Google Scholar
  6. Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005) Google Scholar
  7. K.S. Novoselov, E. McCann, S.V. Morozov, V.I. Fal'ko, M.I.Katsnelson, U. Zeitler, D. Jiang, F. Schedin, A.K. Geim, Nat. Phys. 2, 177 (2006) Google Scholar
  8. S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, L.A. Ponomarenko, D. Jiang, A.K. Geim, Phys. Rev. Lett. 97, 016801 (2006) Google Scholar
  9. Y. Zhang, Z. Jiang, J.P. Small, M.S. Purewal, Y.-W. Tan, M. Fazlollahi, J.D. Chudow, J.A. Jaszczak, H.L. Stormer, P. Kim, Phys. Rev. Lett. 96, 136806 (2006) Google Scholar
  10. P.R. Wallace, Phys. Rev. 71, 622 (1947) Google Scholar
  11. T. Ando, J. Phys. Soc. Jpn. 74, 777 (2005) Google Scholar
  12. E. McCann, K. Kechedzhi, V.I. Fal'ko, H. Suzuura, T. Ando, B.L. Altshuler, Phys. Rev. Lett. 97, 146805 (2006) Google Scholar
  13. I.L. Aleiner, K.B. Efetov, Phys. Rev. Lett. 97, 236801 (2006) Google Scholar
  14. A. Altland, Phys. Rev. Lett. 97, 236802 (2006) Google Scholar
  15. N.H. Shon, T. Ando, J. Phys. Soc. Jpn. 67, 2421 (1998) Google Scholar
  16. P.M. Ostrovsky, I.V. Gornyi, A.D. Mirlin, Phys. Rev. B 74, 235443 (2006) Google Scholar
  17. P.M. Ostrovsky, I.V. Gornyi, A.D. Mirlin, cond-mat/0702115 Google Scholar
  18. S. Guruswamy, A. LeClair, A.W.W. Ludwig, Nucl. Phys. B 583, 475 (2000) Google Scholar
  19. R. Gade, F. Wegner, Nucl. Phys. B 360, 213 (1991) Google Scholar
  20. R. Gade, Nucl. Phys. B 398, 499 (1993) Google Scholar
  21. M.R. Zirnbauer, J. Math. Phys. 37, 4986 (1996) Google Scholar
  22. A. Altland, M.R. Zirnbauer, Phys. Rev. B 55, 1142 (1997) Google Scholar
  23. A. Altland, B.D. Simons, M.R. Zirnbauer, Phys. Rep. 359, 283 (2002) Google Scholar
  24. D. Bernard, A. LeClair, J. Phys. A 35, 2555 (2002) Google Scholar
  25. J. Schwinger, Phys. Rev. 128, 2425 (1962) Google Scholar
  26. M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Addison-Wesley Advanced Book Program, Westview Press, Boulder, 1995) Google Scholar
  27. K.B. Efetov, Supersymmetry in Disorder and Chaos (Cambridge University Press, Cambridge, 1996) Google Scholar
  28. A.W.W. Ludwig, M.P.A. Fisher, R. Shankar, G. Grinstein, Phys. Rev. B 50, 7526 (1994) Google Scholar
  29. S. Hikami, M. Shirai, F. Wegner, Nucl. Phys. B 408, 415 (1993) Google Scholar
  30. S. Ryu, C. Mudry, A. Furusaki, A.W.W. Ludwig, cond-mat/0610598 Google Scholar
  31. A.F. Morpurgo, F. Guinea, Phys. Rev. Lett. 97, 196804 (2006) Google Scholar
  32. J.C. Meyer et al., cond-mat/0701379 Google Scholar
  33. K. Nomura, A.H. MacDonald, Phys. Rev. Lett. 98, 076602 (2007) Google Scholar
  34. A. Rycerz, J. Tworzydlo, C.W.J. Beenakker, cond-mat/0612446 Google Scholar
  35. A.A. Nersesyan, A.M. Tsvelik, F. Wenger, Phys. Rev. Lett. 72, 2628 (1994); Nucl. Phys. B 438, 561 (1995) Google Scholar
  36. M. Bocquet, D. Serban, M.R. Zirnbauer, Nucl. Phys. B 578, 628 (2000) Google Scholar
  37. T. Ando, T. Nakanishi, R. Saito, J. Phys. Soc. Jpn. 67, 2857 (1998); H. Suzuura, T. Ando, Phys. Rev. Lett. 89, 266603 (2002) Google Scholar
  38. A.M.M. Pruisken, Nucl. Phys. B 235, 277 (1984); The Quantum Hall Effect, edited by R.E. Prange, S.M. Girvin (Springer, 1987), p. 117 Google Scholar
  39. B.M. Gammel, W. Brenig, Phys. Rev. Lett. 73, 3286 (1994); Z. Wang, B. Jovanović, D.-H. Lee, ibid. 77, 4426 (1996); L. Schweitzer, P. Markoš, Phys. Rev. Lett. 95, 256805 (2005) Google Scholar
  40. D.B. Fuchs, O.Ya. Viro, Topology II, Encyclopaedia of Mathematical Sciences, edited by V.A. Rokhlin, S.P. Novikov, Vol. 24 (Springer, 2004) Google Scholar
  41. Possibility of the \(\mathbb{Z}_2\) topological term in the 2D symplectic sigma model was emphasized in P. Fendley, Phys. Rev. B 63, 104429 (2001) Google Scholar
  42. P. Markoš, L. Schweitzer, J. Phys. A 39, 3221 (2006) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • P. M. Ostrovsky
    • 1
  • I. V. Gornyi
    • 1
  • A. D. Mirlin
    • 1
    • 2
  1. 1.Institut für NanotechnologieKarlsruheGermany
  2. 2.Institut für Theorie der kondensierten Materie, Universität KarlsruheKarlsruheGermany

Personalised recommendations