Skip to main content
Log in

The sine-Gordon equation in toroidal magnetic-fusion experiments

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

This paper presents a new nonlinear model which describes localized magnetohydrodynamic (MHD) modes in reversed-field pinch (RFP) experiments. To date, nearly all experimental and theoretical work in this area has relied on the use of Fourier decomposition of spatial variations as a function of time. Moreover, due to the complexity of this nonlinear problem, previous work has been restricted to the analysis of a relatively small number of modes. In contrast, the model studied in this paper, based on the damped-driven sine-Gordon (DDSG) equation, addresses the full nonlinearity, does not rely on Fourier decomposition, and does not require the range of the nonlinearity to be small. A specific consequence of working with the full nonlinearity is the existence of solitary waves in dispersive media. These solitary waves, a key part of the model, are used to describe the so-called slinky mode propagating in the plasma. A remarkable resemblance is seen between the waveforms obtained from experiments and the mathematical predictions of the new model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • H.K. Ebraheem, J.L. Shohet, A.C. Scott, Phys. Rev. Lett. 88, 235003 (2002)

    Google Scholar 

  • J.L. Shohet, B.R. Barmish, H.K. Ebraheem, A.C. Scott, Phys. Plasmas 11, 3887 (2004)

  • A.F. Almagri, S. Assadi, S.C. Prager, J.S. Sarff, D.W. Kerst, Phys. Fluids B 4, 4080 (1992)

    Google Scholar 

  • J.S. Sarff, Phys. Fluids B 5, 2540 (1993)

    Google Scholar 

  • S.C. Prager, A.F. Almagri, S. Assadi, J.A. Beckstead, R.N. Dexter, D.J. Den Hartog, C. Chartas, S.A. Hokin, T.W. Lovell, T.D. Rempel, J.S. Sarff, W. Shen, C.W. Spragins, J.C. Sprott, Phys. Plasmas 2, 1367 (1990)

  • R. Bartiromo, Plasma Phys. Control. Fusion B 41, 143 (1999)

    Google Scholar 

  • R. Fitzpatrick, S.C. Guo, D.J. Den Hartog, C.C. Hegna, Phys. Plasmas 6, 3878 (1999)

    Google Scholar 

  • R. Fitzpatrick, Phys. Plasmas 6, 1168 (1999)

  • C.C. Hegna, Phys. Plasmas 3, 4646 (1996)

  • R. Fitzpatrick, E.P. Yu, Phys. Plasmas 7, 3610 (2000)

    Google Scholar 

  • R. Fitzpatrick, T.C. Hender, Phys. Fluids B 3, 644 (1991)

    Google Scholar 

  • R. Fitzpatrick, Nucl. Fusion 33, 1049 (1993)

  • E. Lazzaro, M.F.F. Nave, Phys. Fluids 31, 1623 (1988)

    Google Scholar 

  • K. Kusano, T. Tamano, T. Sato, Nucl. Fusion 31, 1923 (1991)

  • G.A. Navratil, C. Cates, M.E. Maule, D. Maurer, D. Nadle, E. Taylor, Q. Xiao, W.A. Reass, G.A. Wurden, Phys. Plasmas 5, 1855 (1998)

    Google Scholar 

  • H. Zohm, A. Kallenbach, H. Bruhns, G. Fussmann, O. Kluber, Europhys. Lett. 11, 745 (1990)

    Google Scholar 

  • A.K. Hansen, A.F. Almagri, D.J. Den Hartog, S.C. Prager, J.S. Sarff, Phys. Plasmas 5, 2942 (1998)

    Google Scholar 

  • Y. Yagi, S. Sekine, H. Sakakita, H. Koguchi, K. Hayase, Y. Hirano, I. Hirota, S. Kiyama, Y. Maejma, Y. Sato, T. Shimada, K. Sugisaki, Fus. Eng. Design 45, 409 (1999)

    Google Scholar 

  • Y. Yagi, H. Koguchi, A.J.B. Nelsson, T. Bolzonella, P. Zanca, S. Sekine, K. Osakabe, H. Sakakita, Jpn. J. Appl. Phys. 38, 780 (1999)

    Google Scholar 

  • Y. Yagi, H. Koguchi, H. Sakakita, S. Sekine, Y. Maejima, J.A.B. Nilsson, T. Bolzonella, P. Zanca, Phys. Plasmas 6, 3824 (1999)

  • Y. Yagi, H. Sakakita, S. Sekine, H. Koguchi, S. Kiyama, T. Osakabe, Fus. Eng. Design 46, 47 (1999)

    Google Scholar 

  • R. Bartiromo, T. Bolzonella, A. Buffa, G. Chitarin, S. Martini, A. Masiello, S. Ortolani, R. Piovan, P. Sonato, G. Zollino, Phys. Rev. Lett. 83, 1779 (1999)

    Google Scholar 

  • A.K. Hansen, Ph.D. thesis, University of Wisconsin-Madison (2000)

  • S. Assadi, S.C. Prager, K.L. Sidikman, Phys. Rev. Lett. 69, 281 (1992)

    Google Scholar 

  • R.J. La Haye, N. Carlstrom, R.R. Goforth, G.L. Jackson, M.J. Schaffer, T. Tamano, P.L. Taylor, Phys. Fluids 27, 2576 (1984)

    Google Scholar 

  • Y. Yagi, H. Koguchi, H. Sakakita, S. Sekine, P.R. Brunsell, J.A. Malmberg, Phys. Plasmas 8, 1625 (2001)

    Google Scholar 

  • T. Tamano, W.D. Bard, C. Chu, Y. Kondoh, R.J. LaHaye, P.S. Lee, M. Saito, M.J. Schaffer, P.L. Taylor, Phys. Rev. Lett. 59, 1444 (1987)

    Google Scholar 

  • G.B. Whitham, Linear and Nonlinear Waves (John Wiley & Sons, New York, 1974), p. 527

  • T.A. Fulton, R.C. Dynes, Solid State Commun. 12, 57 (1973)

  • J.L. Shohet, The Plasma State (Academic Press, New York, 1971), p. 149

  • A.C. Scott, F.Y.F. Chu, S.A. Reible, J. Appl. Phys. 47, 3272 (1976)

    Google Scholar 

  • T.A. Fulton, L.N. Dunkleberger, Appl. Phys. Lett. 22, 232 (1973)

    Google Scholar 

  • P. Guret, IEEE Trans. Magnet. MAG-11, 751 (1975)

    Google Scholar 

  • P.S. Lomdahl, O.H. Soerensen, P.L. Christiansen, Phys. Rev. B 25, 5737 (1982)

    Google Scholar 

  • A.C. Scott, Nonlinear Science: Emergence and Dynamics of Coherent Structures, 2nd edn. (Oxford University Press, New York, 2003), p. 72

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shohet, J. The sine-Gordon equation in toroidal magnetic-fusion experiments. Eur. Phys. J. Spec. Top. 147, 191–207 (2007). https://doi.org/10.1140/epjst/e2007-00209-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2007-00209-5

Keywords

Navigation