Skip to main content
Log in

Coupled Klein–Gordon equations and energy exchange in two-component systems

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

A system of coupled Klein–Gordon equations is proposed as a model for one-dimensional nonlinear wave processes in two-component media (e.g., long longitudinal waves in elastic bi-layers, where nonlinearity comes only from the bonding material). We discuss general properties of the model (Lie group classification, conservation laws, invariant solutions) and special solutions exhibiting an energy exchange between the two physical components of the system. To study the latter, we consider the dynamics of weakly nonlinear multi-phase wavetrains within the framework of two pairs of counter-propagating waves in a system of two coupled Sine–Gordon equations, and obtain a hierarchy of asymptotically exact coupled evolution equations describing the amplitudes of the waves. We then discuss modulational instability of these weakly nonlinear solutions and its effect on the energy exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R.K. Dodd, J.C. Eilbek, J.D. Gibbon, H.C. Morris, Solitons and Nonlinear Wave Equations (Academic Press, London, 1984)

  • A. Scott, Nonlinear Science: Emergence and Dynamics of Coherent Structures (Oxford University Press, New York, 1999)

  • T.A. Kontorova, Ya.I. Frenkel, Zh. Eksp. Teor. Fiz. 8, 1340 (1938)

    Google Scholar 

  • O.M. Braun, Y.S. Kivshar, The Frenkel–Kontorova Model. Concepts, Methods, and Applications (Texts and Monographs in Physics, Springer-Verlag, Berlin, 2004)

  • I.Sh. Akhatov, V.A. Baikov, K.R. Khusnutdinova, J. Appl. Math. Mech. 59, 353 (1995)

    Google Scholar 

  • K.R. Khusnutdinova, Proceedings of the IUTAM Symposium on Asymptotics, Singularities and Homogenization in Problems of Mechanics, edited by A.B. Movchan; Solid Mechanics and Its Applications 113, 537 (2003)

  • S. Yomosa, Phys. Rev. A 27, 2120 (1983)

    Google Scholar 

  • L.V. Yakushevich, Nonlinear Physics of DNA (Wiley, Chichester, 1998)

  • L.V. Ovsiannikov, Group Analysis of Differential Equations (Academic Press, New York, 1982)

  • P. Olver, Applications of Lie Groups to Differential Equations (Springer-Verlag, New York, 1986)

  • E. Fermi, J. Pasta, S. Ulam, Los Alamos Scientific Laboratory Rep. No. LA-1940 (1955); Reprinted edited by A.C. Newell Nonlinear Wave Motion, edited by A.C. Newell, AMS Lect. Appl. Math. 15, 143 (1974)

  • A.V. Zhiber, N.H. Ibragimov, A.B. Shabat, Dokl. Akad. Nauk SSSR 249, 26 (1979)

    Google Scholar 

  • S. Lie, Arch. Math. Naturv. 6, 112 (1881)

    Google Scholar 

  • CRC Handbook of Lie Group Analysis of Differential Equations, Vol. 1, Symmetries, Exact Solutions and Conservation Laws, edited by N.H. Ibragimov (CRC Press, Boca Raton, 1994)

  • E. Kamke, Differentialgleichungen. Lösungsmethoden und Lösungen. Teil 1, 8th edn. (Akademics Verlag, Greest & Portig, Leipzig, 1967)

  • K.R. Khusnutdinova, D.E. Pelinovsky, Wave Motion 38, 1 (2003)

    Google Scholar 

  • S.D. Griffiths, R.H.J. Grimshaw, K.R. Khusnutdinova, Theoret. Math. Phys. 137, 1448 (2003)

    Google Scholar 

  • S.D. Griffiths, R.H.J. Grimshaw, K.R. Khusnutdinova, Physica D 214, 1 (2006)

    Google Scholar 

  • L.I. Mandelshtam, Lectures on the Theory of Oscillations (Nauka, Moscow, 1972)

  • V.I. Arnold, Mathematical Methods of Classical Mechanics (Springer, New York, 1989)

  • M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Nauka, Moscow, 1979)

  • D.J. Benney, A.C. Newell, Stud. Appl. Math. 46, 133 (1967)

    Google Scholar 

  • M.J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform (SIAM, Philadelphia, 1981)

  • E. Knobloch, J. De Luca, Nonlinearity 3, 975 (1990)

  • E. Knobloch, J.D. Gibbon, Phys. Lett. A 154, 353 (1991)

    Google Scholar 

  • R.D. Pierce, C.E. Wayne, Nonlinearity 8, 769 (1995)

  • G.B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974)

  • A.C. Newell, Solitons in Mathematics and Physics (SIAM, 1985)

  • V.E. Zakharov, J. Appl. Mech. Tech. Phys. 2, 190 (1968)

  • T.B. Benjamin, J.E. Feir, J. Fluid Mech. 27, 417 (1967)

    Google Scholar 

  • M.G. Forest, D.W. McLaughlin, D.J. Muraki, O.C. Wright, J. Nonlinear Sci. 10, 291 (2000)

    Google Scholar 

  • M.G. Forest, O.C. Wright, Physica D 178, 173 (2003)

    Google Scholar 

  • N.N. Akhmediev, A. Ankiewicz, Solitons: Nonlinear Pulses and Beams (Chapman & Hall, London, 1997)

  • Y.S. Kivshar, G.P. Agrawal, Optical Solitons – From Fibers to Photonic Crystals (Academic Press, London, 2003)

  • D.J. Kaup, A.C. Newell, Proc. Roy. Soc. A 361, 413 (1978)

    Google Scholar 

  • D. McLaughlin, A.C. Scott, Phys. Rev. A 18, 1652 (1978)

    Google Scholar 

  • Yu.S. Kivshar, B.A. Malomed, Rev. Mod. Phys. 61, 763 (1989)

    Google Scholar 

  • K.R. Khusnutdinova, V.V. Silberschmidt, Proc. Estonian Acad. Sci. Phys. Math. 52, 63 (2003)

    Google Scholar 

  • L.I. Slepyan, Fracture. A Topical Encyclopedia of Current Knowledge, edited by G.P. Cherepanov (Krieger Publishing Co., Malabar, Florida, 1998)

  • K.R. Khusnutdinova, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1, 71 (1992)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khusnutdinova, K. Coupled Klein–Gordon equations and energy exchange in two-component systems. Eur. Phys. J. Spec. Top. 147, 45–72 (2007). https://doi.org/10.1140/epjst/e2007-00202-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2007-00202-0

Keywords

Navigation