Skip to main content
Log in

Modulational instability in isolated and driven Fermi–Pasta–Ulam lattices

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

We present a detailed analysis of the modulational instability of the zone-boundary mode for one and higher-dimensional Fermi–Pasta–Ulam (FPU) lattices. The growth of the instability is followed by a process of relaxation to equipartition, which we have called the Anti-FPU problem because the energy is initially fed into the highest frequency part of the spectrum, while in the original FPU problem low frequency excitations of the lattice were considered. This relaxation process leads to the formation of chaotic breathers in both one and two space dimensions. The system then relaxes to energy equipartition, on time scales that increase as the energy density is decreased. We supplement this study by considering the nonconservative case, where the FPU lattice is homogeneously driven at high frequencies. Standing and travelling nonlinear waves and solitonic patterns are detected in this case. Finally we investigate the dynamics of the FPU chain when one end is driven at a frequency located above the zone boundary. We show that this excitation stimulates nonlinear bandgap transmission effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • E. Fermi, J. Pasta, S. Ulam, Los Alamos Science Laboratory Report No. LA-1940 (1955) (unpublished); reprinted in collected papers of E. Fermi, edited by E. Segré (University of Chicago Press, Chicago, 1965), Vol. 2, p. 978; Nonlinear Wave Motion, edited by A.C. Newell, Appl. Math. 15 (AMS, Providence, Rhode Island, 1974); The Many-Body Problem, edited by C.C. Mattis (World Scientific, Singapore, 1993)

  • J. Ford, Phys. Rep. 213, 271 (1992)

    Google Scholar 

  • A.J. Lichtenberg, M.A. Lieberman, Regular and Chaotic Dynamics (Springer, Berlin, 1992), Ch. 6.5

  • N.J. Zabusky, G.S. Deem, J. Comp. Phys. 2, 126 (1967)

    Google Scholar 

  • N. Budinsky, T. Bountis, Physica D 8, 445 (1983)

    Google Scholar 

  • S. Flach, Physica D 91, 223 (1996)

  • P. Poggi, S. Ruffo, Physica D 103, 251 (1997)

    Google Scholar 

  • G.M. Chechin, N.V. Novikova, A.A. Abramenko, Physica D 166, 208 (2002)

    Google Scholar 

  • G.M. Chechin, D.S. Ryabov, K.G. Zhukov, Physica D 203, 121 (2005)

    Google Scholar 

  • B. Rink, Physica D 175, 31 (2003)

  • T. Dauxois, S. Ruffo, A. Torcini, Phys. Rev. E 56, R6229 (1997)

  • V.M. Burlakov, S.A. Darmanyan, V.N. Pyrkov, Sov. Phys. JETP 81, 496 (1995)

    Google Scholar 

  • K.W. Sandusky, J.B. Page, Phys. Rev. B 50, 866 (1994)

    Google Scholar 

  • T. Dauxois, S. Ruffo, A. Torcini, J. Phys. IV (France) 8, 147 (1998)

    Google Scholar 

  • Yu.S. Kivshar, M. Peyrard, Phys. Rev. A 46, 3198 (1992)

    Google Scholar 

  • T.B Benjamin, J.E. Feir, J. Fluid Mech. 27, 417 (1967)

    Google Scholar 

  • V.E. Zakharov, A.B. Shabat, Z. Eksp. I Teor. Fiz. 64, 1627 (1973)

    Google Scholar 

  • V.P. Lukomskii, Ukr. Fiz. Zh. 23, 134 (1978)

    Google Scholar 

  • G.P. Berman, A.R. Kolovskii, Zh. Eksp. Teor. Fiz. 87, 1938 (1984); Sov. Phys. JETP 60, 1116 (1984)

  • I. Daumont, T. Dauxois, M. Peyrard, Nonlinearity 10, 617 (1997)

    Google Scholar 

  • V.M. Burlakov, S.A. Kiselev, V.I. Rupasov, Phys. Lett. A 147, 130 (1990); V.M. Burlakov, S. Kiselev, Sov. Phys. JETP 72, 854 (1991)

    Google Scholar 

  • A.J. Sievers, S. Takeno, Phys. Rev. Lett. 61, 970 (1988)

    Google Scholar 

  • T. Dauxois, A. Litvak-Hinenzon, R.S. MacKay, A. Spanoudaki (eds.), Energy Localisation and Transfer, Adv. Ser. Nonlinear Dyn. (World Scientific, 2004)

  • T. Cretegny, T. Dauxois, S. Ruffo, A. Torcini, Physica D 121, 109 (1998)

    Google Scholar 

  • Y.A. Kosevich, S. Lepri, Phys. Rev. B 61, 299 (2000)

    Google Scholar 

  • K. Ullmann, A.J. Lichtenberg, G. Corso, Phys. Rev. E 61, 2471 (2000)

    Google Scholar 

  • V.V. Mirnov, A.J. Lichtenberg, H. Guclu, Physica D 157, 251 (2001)

    Google Scholar 

  • N.J. Zabusky, Z. Sun, G. Peng, Chaos 16, 013130 (2006)

    Google Scholar 

  • K.Ø. Rasmussen, T. Cretegny, P.G. Kevrekidis, N. Grønbech-Jensen, Phys. Rev. Lett. 84, 3740 (2000)

    Google Scholar 

  • M. Johansson, K.Ø. Rasmussen, Phys. Rev. E 70, 066610 (2004)

    Google Scholar 

  • M. Johansson, Physica D 216, 62 (2006)

  • B. Gershgorin, Y.V. Lvov, D. Cai, Phys. Rev. Lett. 95, 264302 (2005)

  • S. Flach, V. Ivanchenko, O.I. Kanakov, Phys. Rev. Lett. 95, 064102 (2005)

  • J. Tailleur, J. Kurchan, Nat. Phys. (2007); cond-mat/0611672 (to be published)

  • S. Tanase-Nicola, J. Kurchan, J. Stat. Phys. 116, 1201 (2004)

    Google Scholar 

  • T. Dauxois, R. Khomeriki, F. Piazza, S. Ruffo, Chaos 15, 015110 (2005)

    Google Scholar 

  • V.M. Burlakov, Phys. Rev. Lett. 80, 3988 (1998)

    Google Scholar 

  • F. Geniet, J. Leon, Phys. Rev. Lett. 89, 134102 (2002)

    Google Scholar 

  • R. Khomeriki, S. Lepri, S. Ruffo, Phys. Rev. E 70, 066626 (2004)

    Google Scholar 

  • P. Maniadis, G. Kopidakis, S. Aubry, Physica D 216, 121 (2006)

    Google Scholar 

  • A. Cafarella, M. Leo, R.A. Leo, Phys. Rev. E 69, 046604 (2004)

    Google Scholar 

  • F.M. Izraïlev, B.V. Chirikov, Dokl. Akad. Nauk. SSSR 166, 57 (1966); Sov. Phys. Doklayd 11, 30 (1966)

    Google Scholar 

  • M. Pettini, M. Landolfi, Phys. Rev. A 41, 768 (1990)

    Google Scholar 

  • S. Flach, K. Kladko, R.S. MacKay, Phys. Rev. Lett. 78, 1207 (1997)

  • D.W. Jepsen, J. Math. Phys. 6, 405 (1965)

    Google Scholar 

  • J. Barré, rapport de stage de Maîtrise, ENS Lyon, “Instabilités des solutions périodiques et formation de breathers chaotiques dans le modèle FPU” (1998)

  • M. Clément, rapport de stage de License, ENS Lyon, “Différentes études du modèle Fermi-Pasta-Ulam” (1996)

  • S. Shinohara, J. Phys. Soc. Jpn. 71, 1802 (2002); Prog. Theor. Phys. Suppl. 150, 423 (2003)

  • B. Rink, F. Verhulst, Physica A 285, 467 (2000); B. Rink, Commun. Math. Phys. 218, 665 (2001)

    Google Scholar 

  • T. Dauxois, M. Peyrard, Physics of Solitons (Cambridge University Press, 2006)

  • M. Remoissenet, Phys. Rev. B 33, 2386 (1986)

    Google Scholar 

  • H. Yoshida, Phys. Lett. A 150, 262 (1990)

    Google Scholar 

  • J.M. Sanz-Serna, M.P. Calvo, Numerical Hamiltonian Problems (Chapman & Hall, London, 1994)

  • T. Dauxois, M. Peyrard, Phys. Rev. Lett. 70, 3935 (1993)

    Google Scholar 

  • O. Bang, M. Peyrard, Phys. Rev. E 53, 4143 (1996)

    Google Scholar 

  • Y.A. Kosevich, G. Corso, Physica D 170, 1 (2002)

    Google Scholar 

  • J. DeLuca, A.J. Lichtenberg, S. Ruffo, Phys. Rev. E 60, 3781 (1999)

    Google Scholar 

  • K. Yoshimura, Physica D 104, 148 (1997)

  • K. Yoshimura, Phys. Rev. E 70, 016611 (2004)

    Google Scholar 

  • R.L. Bivins, N. Metropolis, J.R. Pasta, J. Comp. Phys. 12, 62 (1972)

    Google Scholar 

  • G. Benettin, Chaos 15, 015108 (2005)

  • R. Franzosi, P. Poggi, M. Cerruti-Sola, Phys. Rev. E 71, 036218 (2005)

    Google Scholar 

  • M. Pettini, Phys. Rev. E 47, 828 (1993); L. Casetti, C. Clementi, M. Pettini, Phys. Rev. E 54, 5969 (1996)

  • R. Khomeriki, S. Lepri, S. Ruffo, Phys. Rev. E 64, 056606 (2001)

    Google Scholar 

  • R. Khomeriki, S. Lepri, S. Ruffo, Physica D 168-169C, 152 (2002)

  • I.V. Barashenkov, Yu.S. Smirnov, Phys. Rev. E. 54, 5707 (1996)

    Google Scholar 

  • I.V. Barashenkov, Yu.S. Smirnov, N.V. Alexeeva, Phys. Rev. E 57, 2350 (1998)

    Google Scholar 

  • S. Lepri, R. Livi, A. Politi, Phys. Rep. 377, 1 (2003)

    Google Scholar 

  • S. Takeno, K. Kisoda, A.J. Sievers, Prog. Theor. Phys. Suppl. 94, 242 (1988)

    Google Scholar 

  • Yu.A. Kosevich, R. Khomeriki, S. Ruffo, Europhys. Lett. 66, 21 (2004)

    Google Scholar 

  • A.J. Scott, Nonlinear Science (Oxford University Press, 1999), Ch. 3.3

  • Yu.A. Kosevich, Phys. Rev. Lett. 71, 2058 (1993); Phys. Rev. B 47, 3138 (1993)

    Google Scholar 

  • Notice that a simpler approximate expression for the breather frequency has been proposed in kosprl in the form \(\omega_B=\sqrt{3+81A^2/16}\). We have checked that this expression is also in good agreement with numerical data, but we prefer to use the more accurate form in formula ([SEE TEXT])

  • Yu.A. Kosevich, G. Corso, Physica D 170, 1, (2002)

    Google Scholar 

  • R. Khomeriki, J. Leon, M. Manna, Phys. Rev. B 74, 094414 (2006)

    Google Scholar 

  • D. Chevriaux, R. Khomeriki, J. Leon, Phys. Rev. B 73, 214516 (2006)

    Google Scholar 

  • R. Khomeriki, D. Chevriaux, J. Leon, Eur. Phys. J. B 49, 213 (2006)

    Google Scholar 

  • D. Chevriaux, R. Khomeriki, J. Leon, Modern Phys. Lett. B 20, 515 (2006)

    Google Scholar 

  • R. Khomeriki, Phys. Rev. Lett. 92, 063905 (2004)

    Google Scholar 

  • R. Khomeriki, J. Leon, Phys. Rev. Lett. 94, 243902 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Dauxois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dauxois, T., Khomeriki, R. & Ruffo, S. Modulational instability in isolated and driven Fermi–Pasta–Ulam lattices. Eur. Phys. J. Spec. Top. 147, 3–23 (2007). https://doi.org/10.1140/epjst/e2007-00200-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2007-00200-2

Keywords

Navigation