Skip to main content
Log in

Slow crack growth: Models and experiments

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

The properties of slow crack growth in brittle materials are analyzed both theoretically and experimentally. We propose a model based on a thermally activated rupture process. Considering a 2D spring network submitted to an external load and to thermal noise, we show that a preexisting crack in the network may slowly grow because of stress fluctuations. An analytical solution is found for the evolution of the crack length as a function of time, the time to rupture and the statistics of the crack jumps. These theoretical predictions are verified by studying experimentally the subcritical growth of a single crack in thin sheets of paper. A good agreement between the theoretical predictions and the experimental results is found. In particular, our model suggests that the statistical stress fluctuations trigger rupture events at a nanometric scale corresponding to the diameter of cellulose microfibrils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • H.J. Herrmann, S. Roux, Statistical Models for the Fracture of Disordered Media (Elsevier, Amsterdam, 1990)

  • M.J. Alava, P.K.N.N. Nukala, S. Zapperi, Adv. Phys. 55, 349 (2006)

    Google Scholar 

  • S.S. Brenner, J. Appl. Phys. 33, 33 (1962)

    Google Scholar 

  • S.N. Zhurkov, Int. J. Fract. Mech. 1, 311 (1965)

    Google Scholar 

  • L. Golubovic, S. Feng, Phys. Rev. A 43, 5223 (1991)

    Google Scholar 

  • Y. Pomeau, C.R. Acad. Sci. Paris II 314, 553 (1992); C.R. Mécanique 330, 1 (2002)

  • A. Buchel, J.P. Sethna, Phys. Rev. Lett. 77, 1520 (1996); Phys. Rev. E 55, 7669 (1997)

    Google Scholar 

  • K. Kitamura, I.L. Maksimov, K. Nishioka, Phil. Mag. Lett. 75, 343 (1997)

    Google Scholar 

  • S. Roux, Phys. Rev. E 62, 6164 (2000)

    Google Scholar 

  • R. Scorretti, S. Ciliberto, A. Guarino, Europhys. Lett. 55, 626 (2001)

    Google Scholar 

  • S. Santucci, L. Vanel, R. Scorretti, A. Guarino, S. Ciliberto, Europhys. Lett. 62, 320 (2003)

    Google Scholar 

  • R.A. Schapery, Encyclopedia of Material Science and Engineering (Pergamon, Oxford, 1986), p. 5043

  • J.S. Langer, Phys. Rev. Lett. 70, 3592 (1993)

    Google Scholar 

  • A. Chudnovsky, Y. Shulkin, Int. J. Fract. 97, 83 (1999)

    Google Scholar 

  • P. Paris, F. Erdogan, J. Basic Eng. 89, 528 (1963)

    Google Scholar 

  • A.A. Griffith, Phil. Trans. Roy. Soc. Lond. A 221, 163 (1920)

    Google Scholar 

  • B. Lawn, T. Wilshaw, Fracture of Brittle Solids (Cambridge University Press, Cambridge, 1975)

  • L. Pauchard, J. Meunier, Phys. Rev. Lett. 70, 3565 (1993)

    Google Scholar 

  • S. Ciliberto, A. Guarino, R. Scorretti, Physica D 158, 83 (2001)

    Google Scholar 

  • B. Diu, C. Guthmann, D. Lederer, B. Roulet, Physique Statistique (Herrmann, Paris, 1989), p. 272

  • M. Marder, Phys. Rev. E 54, 3442 (1996)

    Google Scholar 

  • R. Thomson, Solid State Physics, edited by H. Ehrenreich, D. Turnbull (Academic, New York, 1986), vol. 39, p. 1

  • D. Stauffer, Introduction to Percolation Theory (Taylor & Francis, London, 1991)

  • S. Santucci, P.-P. Cortet, S. Deschanel, L. Vanel, S. Ciliberto, Europhys. Lett. 74, 595 (2006)

    Google Scholar 

  • S. Santucci, L. Vanel, S. Ciliberto, Phys. Rev. Lett. 93, 095505 (2004)

    Google Scholar 

  • A. Guarino, S. Ciliberto, A. Garcimartìn, Europhys. Lett. 47, 456 (1999)

    Google Scholar 

  • H.F. Jakob, S.E. Tschegg, P. Fratzl, J. Struct. Biol. 113, 13 (1994)

    Google Scholar 

  • P.-P. Cortet, L. Vanel, S. Ciliberto, Europhys. Lett. 74, 602 (2006)

    Google Scholar 

  • J. Kierfeld, V.M. Vinokur, Phys. Rev. Lett. 96, 175502 (2006)

    Google Scholar 

  • E. Bouchbinder, I. Procaccia, S. Santucci, L. Vanel, Phys. Rev. Lett. 96, 055509 (2006)

    Google Scholar 

  • S. Santucci, K.J. Måloy, A. Delaplace, J. Mathiesen, A. Hansen, J.O. Haavig Bakke, J. Schmittbuhl, L. Vanel, P. Ray, Phys. Rev. E. 75, 016104 (2007)

    Google Scholar 

  • F. Bueche, J. App. Phys. 28, 784 (1957)

    Google Scholar 

  • N. Mallick, P.-P. Cortet, S. Santucci, S. Roux, L. Vanel, Phys. Rev. Lett. (2006) (submitted)

  • P.P. Cortet, S. Santucci, L.Vanel, S. Ciliberto, Europhys. Lett. 71, 1 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ciliberto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santucci, S., Vanel, L. & Ciliberto, S. Slow crack growth: Models and experiments. Eur. Phys. J. Spec. Top. 146, 341–356 (2007). https://doi.org/10.1140/epjst/e2007-00192-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2007-00192-9

Keywords

Navigation