Skip to main content
Log in

Thermal convection in a rotating binary viscoelastic liquid mixture

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

In this work we report theoretical and numerical results on convection in a viscoelastic binary mixture under rotation. In particular, we focus in the Maxwelian case of viscoelastic fluid. We obtain explicit expressions for the convective thresholds in terms of the mixture parameters of the system in the case of idealized boundary conditions. We also calculate numerically the convective thresholds for the case of realistic rigid–rigid boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • G.J. Nuovo, PCR in situ Hybridization: Protocols and Applications (Lippincott-Raven, Philadelphia, 1997)

  • M. Krishna, V.M. Ugaz, M.A. Burns, Science 298, 793 (2002)

    Google Scholar 

  • D. Braun, A. Libchaber, Phys. Rev. Lett. 89, 188103 (2002)

    Google Scholar 

  • D. Braun, N.L. Goddard, A. Libchaber, Phys. Rev. Lett. 91, 158103 (2003)

    Google Scholar 

  • M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993)

    Google Scholar 

  • P.R. Kolodner, H. Williams, C. Moe, J. Chem. Phys. 88, 6512 (1988)

    Google Scholar 

  • P.R. Kolodner, J. Non Newtonian Fluid Mech. 75, 167 (1998)

  • R.B. Bird, O. Hassager, Dynamics of Polymeric Liquids, Fluid Mechanics, Vol. I (Wiley-Interscience, New York, 1987)

  • S.R. Quake, H. Babcock, S. Chu, Nature 388, 151 (1997)

    Google Scholar 

  • Perkins, T.T., Smith, D.E. Chu, Science 276, (1997) 2016

  • D.E. Smith, H. Babcock, S. Chu, Science 283, 1724 (1999)

    Google Scholar 

  • H. Babcock, D.E. Smith, J.S. Hur, E.S.G. Shaqfeh, S. Chu, Phys. Rev. Lett. 85, 2018 (2000)

    Google Scholar 

  • J. Martínez-Mardones, R. Tiemann, D. Walgraef, W. Zeller, Phys. Rev. E 54, 1478 (1996)

    Google Scholar 

  • J. Martínez-Mardones, R. Tiemann, D. Walgraef, J. Non Newtonian Fluid Mech. 93, 1 (2000)

    Google Scholar 

  • S. Chandrasekhar, Hydrodynamics and Hydromagnetic Stability (Oxford University Press, Oxford, 1961)

  • E. Bodenschatz, G. Ahlers, W. Pesch, Ann. Rev. Fluid Mech 32, 709 (2000)

    Google Scholar 

  • J.K. Bhattacharjee, Phys. Fluids 31, 2456 (1988)

  • J.K. Bhattacharjee, Phys. Rev. A 37, 1368 (1988)

    Google Scholar 

  • K. Kumar, Phys. Rev. A 41, 3134 (1990)

    Google Scholar 

  • P.K. Bhatia, J.M. Steiner, ZAMM 52, 321 (1972)

  • G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 1990)

  • P. Parmentier, G. Lebon, V. Regnier, J. Non Newtonian Fluid Mech. 89, 63 (2000)

    Google Scholar 

  • R. Cerbino, A. Vailati, M. Giglio, Phys. Rev. E 66, 5301 (2002)

    Google Scholar 

  • A. Ryskin, H.W. Müller, H. Pleiner, Phys. Rev. E 67, 6302 (2003)

    Google Scholar 

  • I.A. Eltayeb, ZAMM 55, 599 (1975)

  • S.D. Fisher, Complex Variables (Brooks and Cole, Pacific Grove, 1990)

  • see: http://en.wikipedia.org/wiki/Deborah_number

  • L.N. Trefethen, Spectral Methods in Matlab (SIAM, Philadelphia, 2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bragard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laroze, D., Martínez-Mardones, J. & Bragard, J. Thermal convection in a rotating binary viscoelastic liquid mixture. Eur. Phys. J. Spec. Top. 146, 291–300 (2007). https://doi.org/10.1140/epjst/e2007-00187-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2007-00187-6

Keywords

Navigation