Skip to main content
Log in

Reentrant and whirling hexagons in non-Boussinesq convection

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

We review recent computational results for hexagon patterns in non-Boussinesq convection. For sufficiently strong dependence of the fluid parameters on the temperature we find reentrance of steady hexagons, i.e. while near onset the hexagon patterns become unstable to rolls as usually, they become again stable in the strongly nonlinear regime. If the convection apparatus is rotated about a vertical axis the transition from hexagons to rolls is replaced by a Hopf bifurcation to whirling hexagons. For weak non-Boussinesq effects they display defect chaos of the type described by the two-dimensional (2D) complex Ginzburg–Landau equation. For stronger non-Boussinesq effects the Hopf bifurcation becomes subcritical and localized bursting of the whirling amplitude is found. In this regime the coupling of the whirling amplitude to (small) deformations of the hexagon lattice becomes important. For yet stronger non-Boussinesq effects this coupling breaks up the hexagon lattice and strongly disordered states characterized by whirling and lattice defects are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • E. Bodenschatz, W. Pesch, G. Ahlers, Ann. Rev. Fluid Mech. 32, 709 (2000)

    Google Scholar 

  • S.W. Morris, E. Bodenschatz, D.S. Cannell, G. Ahlers, Phys. Rev. Lett. 71, 2026 (1993)

    Google Scholar 

  • W. Decker, W. Pesch, A. Weber, Phys. Rev. Lett. 73, 648 (1994)

    Google Scholar 

  • S.W. Morris, E. Bodenschatz, D.S. Cannell, G. Ahlers, Physica D 97, 164 (1996)

    Google Scholar 

  • D.A. Egolf, I.V. Melnikov, W. Pesch, R.E. Ecke, Nature 404, 733 (2000)

    Google Scholar 

  • R.G. Matley, W.Y. Wong, M.S. Thurlow, P.G. Lucas, M.J. Lees, O.J. Griffiths, A.L. Woodcraft, Phys. Rev. E 63, 045301 (2001)

    Google Scholar 

  • K.-H. Chiam, M.R. Paul, M.C. Cross, H.S. Greenside, Phys. Rev. E 67, 056206 (2003)

    Google Scholar 

  • F. Zhong, R.E. Ecke, Chaos 2, 163 (1992)

  • E. Bodenschatz, D.S. Cannell, J.R. deBruyn, R. Ecke, Y.C. Hu, K. Lerman, G. Ahlers, Physica D 61, 77 (1992)

    Google Scholar 

  • Y. Hu, R.E. Ecke, G. Ahlers, Phys. Rev. Lett. 74, 5040 (1995)

    Google Scholar 

  • Y. Hu, W. Pesch, G. Ahlers, R.E. Ecke, Phys. Rev. E 58, 5821 (1998)

    Google Scholar 

  • G. Küppers, D. Lortz, J. Fluid Mech. 35, 609 (1969)

    Google Scholar 

  • F.H. Busse, J. Fluid Mech. 30, 625 (1967)

    Google Scholar 

  • M. Assenheimer, V. Steinberg, Phys. Rev. Lett. 76, 756 (1996)

    Google Scholar 

  • A. Roy, V. Steinberg, Phys. Rev. Lett. 88, 244503 (2002)

    Google Scholar 

  • R.M. Clever, F.H. Busse, Phys. Rev. E 53, R2037 (1996)

  • F.H. Busse, R.M. Clever, E. Grote, Chaos Sol. Fract. 10, 753 (1999)

    Google Scholar 

  • J.W. Swift, Contemporary Mathematics, vol. 28, Providence (Amer. Math. Soc., 1984), p. 435

  • A.M. Soward, Physica D 14, 227 (1985)

  • S. Madruga, H. Riecke, Phys. Rev. E (2007) (to appear)

  • S. Madruga, H. Riecke, W. Pesch, J. Fluid Mech. 548, 341 (2006)

    Google Scholar 

  • S. Madruga, H. Riecke, W. Pesch, Phys. Rev. Lett. 96, 074501 (2006)

    Google Scholar 

  • Y.-N. Young, H. Riecke, W. Pesch, New J. Phys. 5, 135 (2003)

    Google Scholar 

  • E. Bodenschatz, J.R. deBruyn, G. Ahlers, D.S. Cannell, Phys. Rev. Lett. 67, 3078 (1991)

    Google Scholar 

  • E. Pampaloni, C. Pérez-Garía, L. Albavetti, S. Ciliberto, J. Fluid Mech. 234, 393 (1992)

    Google Scholar 

  • C. Pérez-García, E. Pampaloni, S. Ciliberto, Europhys. Lett. 12, 51 (1990)

    Google Scholar 

  • G. Ahlers, I. Mutabazi, J.E. Wesfreid, E. Guyon (eds.), Dynamics of Spatio-Temporal Cellular Structures – Henri Bénard Centenary Review (Springer Tracts in Modern Physics, Springer, 2005)

  • J. Oh, J. Ortiz de Zárate, J.V. Sengers, G. Ahlers, Phys. Rev. E 69, 021106 (2004)

    Google Scholar 

  • G. Dewel, J. Verdasca, A. de Wit, P. Borkmans, Phys. Lett. A 168, 194 (1992)

    Google Scholar 

  • B. Echebarria, H. Riecke, Phys. Rev. Lett. 84, 4838 (2000)

    Google Scholar 

  • B. Echebarria, H. Riecke, Physica D 143, 187 (2000)

    Google Scholar 

  • H. Chaté, P. Manneville, Physica A 224, 348 (1996)

    Google Scholar 

  • S. Madruga, C. Pérez-García, Int. J. Bifur. Chaos 14, 107 (2004)

    Google Scholar 

  • R. Friedrichs, A. Engel, Phys. Rev. E 6402, 021406 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madruga, S., Riecke, H. Reentrant and whirling hexagons in non-Boussinesq convection. Eur. Phys. J. Spec. Top. 146, 279–290 (2007). https://doi.org/10.1140/epjst/e2007-00186-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2007-00186-7

Keywords

Navigation