Skip to main content
Log in

Chebyshev collocation methods in thermoconvective problems

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

Chebyshev collocation methods are high-order methods. This means that high precision is obtained with low-order expansions. Then `small' matrices appear in the numerical implementation and reduced computing resources become necessary. Thermoconvective fluid dynamics problems are large ones, involving various partial differential equations for several fields in large dimensions. The models present a number of difficulties, such as the different orders of derivatives for the different fields, or lack of information on the boundary conditions for pressure. This paper presents a review of the specific characteristics of this method when it is applied to thermoconvective problems: the method, the types of problems, the different resulting models, the strategies to overcome the difficulties of the different derivative orders and the characteristics of the matrices, and the convergence properties. A comparison of its efficiency with other numerical methods like finite differences and finite elements is included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • G. Ahlers, Physica D 51, 421 (1991)

  • H. Bénard, Rev. Gén. Sci. Pures Appl. 11, 1261 (1900)

    Google Scholar 

  • C. Bernardi, Y. Maday, Approximations Spectrales De Problémes Aux Limites Elliptiques (Springer-Verlag, Berlin, 1991)

  • C. Bernardi, C. Canuto, Y. Maday, SIAM J. Numer. Anal. 25, 1237 (1988)

    Google Scholar 

  • C. Bernardi, Y. Maday, SIAM J. Numer. Anal. 26, 769 (1989)

    Google Scholar 

  • B. Birnir, N. Svanstedt, Disc. Cont. Dyn. Syst. 10, 53 (2004)

  • E. Bodenschatz, J.R. de Bruyn, G. Ahlers, D.S. Cannell, Phys. Rev. Lett. 67, 3078 (1991)

    Google Scholar 

  • C. Canuto, A. Quarteroni, Spectral Methods for Partial Differential Equations, edited by R.G. Voigt, D. Gottlieb, M.Y. Hussaini (SIAM-CBMS, Philadelphia, 1984), pp. 55–78

  • C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods in Fluid Dynamics (Springer, Berlin, 1988)

  • W.M. Cao, R.D. Haynesn, M.R. Trummer, J. Sci. Comp. 24, 343 (2005)

    Google Scholar 

  • J.Y. Chemin, Jean Jeray et Navier-Stokes. Numéro spécial de la Gazette des Mathématiciens, Societé Mathématique de France (2000), pp. 71–82

  • K.A. Cliffe, T.J. Garrat, A. Spence, SIAM J. Matrix Anal. Appl. 5, 1310 (1994)

    Google Scholar 

  • M.G. Crandall, P.H. Rabinowitz, J. Funct. Anal. 8, 321 (1971)

    Google Scholar 

  • P.C. Dauby, G. Lebon, J. Fluid Mech. 329, 25 (1996)

    Google Scholar 

  • F. Daviaud, J.M. Vince, Phys. Rev. E 48, 4432 (1993)

    Google Scholar 

  • M.O. Deville, Comp. Methods Appl. Mech. Eng. 80, 27 (1990)

    Google Scholar 

  • N. Garnier, A. Chiffaudel, Eur. Phys. J. B 19, 87 (2001)

    Google Scholar 

  • T.J. Garrat, G. Moore, A. Spence, Contibutions in Numerical Mathematics (World Sci. Publ., Singapore, 1993)

  • V. Girault, P.A. Raviart, Finite Element Methods for Navier–Stokes Equations (Springer-Verlag, Berlin, 1986)

  • G.H. Golub, C.F. van Loan, Matrix Computations (John Hopkins Univ. Press, Baltimore, 1989)

  • M. González Burgos, Actas del XIV CEDYA/IV CMA Congress of Applied Mathematics (U. Barcelona, Vic, 1995)

  • D. Gotlieb, S.A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications (SIAM, Philadelphia, 1993)

  • P.M. Gresho, R.L. Sani, Int. J. Num. Meth. Fluids 7, 1111 (1987)

    Google Scholar 

  • H. Herrero, A.M. Mancho, Phys. Rev. E 57, 7336 (1998)

    Google Scholar 

  • H. Herrero, A.M. Mancho, Appl. Numer. Math. 33, 161 (2000)

    Google Scholar 

  • H. Herrero, S. Hoyas, A. Donoso, A.M. Mancho, J.M. Chacón, R.F. Portugués, B. Yeste, J. Scien. Comp. 8, 312 (2003)

    Google Scholar 

  • H. Herrero, A.M. Mancho, Int. J. Numer. Meth. Fluids 39, 391 (2002)

    Google Scholar 

  • H. Herrero, A.M. Mancho, S. Hoyas, Numerical Mathematics and Advanced Applications, Enumath 2005 (Springer, Berlin, 2006), pp. 889–896

  • S. Hoyas, H. Herrero, A.M. Mancho, J. Phys. A: Math. Gen. 35, 4067 (2002)

    Google Scholar 

  • S. Hoyas, H. Herreron, A.M. Mancho, Phys. Rev. E 66, 057301 (2002)

    Google Scholar 

  • S. Hoyas, H. Herreron, A.M. Mancho, CD Actas del XVII CEDYA/VII CMA (Salamanca, 2001)

  • S. Hoyas, Estudio teŕico y numérico de un problema de convección de Bénard–Marangoni (Universidad Complutense de Madrid, 2003)

  • S. Hoyas, A.M. Mancho, H. Herrero, N. Garnier, A. Chiffaudel. Phys. Fluids 17, 054104 (2005)

    Google Scholar 

  • K. Ito, S.S. Ravindran, SIAM J. Sci. Comput. 19, 1847 (1998)

    Google Scholar 

  • G. Kasperski, G. Lebrosse, Phys. Fluids 12, 2695 (2000)

  • E.L. Koschmider, Bénard Cells and Taylor Vortices (Cambridge University Press, Cambridge, 1993)

  • R.B. Lehoucq, D.C. Sorensen, SIAM J. Matrix Anal. Appl. 17, 789 (1996)

    Google Scholar 

  • J. Leray, Selected papers. Oeuvres scientifiques, Vol. II, Fluid dynamics and real partial differential equations. With an introduction by Peter Lax, edited by Paul Malliavin (Springer-Verlag, Berlin; Societé Mathématique de France, Paris, 1998)

  • E. Leriche, G. Labrosse, SIAM J. Scien. Comp. 22, 1386 (2000)

    Google Scholar 

  • T. Ma, S. Wang, Comm. Pure Appl. Anal. 2, 591 (2003)

    Google Scholar 

  • Y. Maday, B. Métivet, Modél. Math. Anal. Numér. 21, 93 (1986)

  • A. M. Mancho, H. Herrero, J. Burguete, Phys. Rev. E 56, 2916 (1997)

    Google Scholar 

  • A.M. Mancho, H. Herrero, Phys. Fluids 12, 1044 (2000)

  • F. Marqués, M. Net, J.M. Massaquer, I. Mercader, Comp. Meth. Appl. Mech. Eng. 110, 157 (1993)

    Google Scholar 

  • I. Mercader, M. Net, A. Falques, Comp. Meth. Appl. Mech. Eng. 91, 1245 (1991)

    Google Scholar 

  • I. Mercader, J. Prat, E. Knobloch, Int. J. Bif. Chaos 11, 27 (2001)

    Google Scholar 

  • M.C. Navarro, H. Herrero, A.M. Mancho, Proc. Int. Conf. Math. and Stat. Modeling in Honor E. Castillo (U. Castilla-La Mancha, Ciudad Real, 2006)

  • M.C. Navarro, A. Wathen, H. Herrero, A.M. Mancho, Comm. Comput. Phys. (submitted)

  • M.C. Navarro, A.M. Mancho, H. Herrero, Chaos (submitted)

  • M.C. Navarro, H. Herrero, S. Hoyas, Comp. Meth. Appl. Mech. Eng. (submitted)

  • H.D. Nguyen, S. Paik, J.N. Chung, Num. Heat Transfer Part A: Applications 24, 161 (1993)

    Google Scholar 

  • D.A. Nield, J. Fluid Mech. 19, 341 (1964)

    Google Scholar 

  • J.R.A. Pearson, J. Fluid Mech. 4, 489 (1958)

    Google Scholar 

  • J.K. Platten, J.C. Legros, Convection in Liquids (Springer, Berlin, 1984)

  • C. Pozrikidis, Introduction to Theoretical and Computational Fluid Dynamics (Oxford University Press, Oxford, 1997)

  • P.H. Rabinowitz, Arch. Rational Mech. Anal. 29, 32 (1968)

    Google Scholar 

  • P. H. Rabinowitz, J. Functional Anal. 7, 487 (1971)

    Google Scholar 

  • Rayleigh (Lord), Phil. Mag. 32, 529 (1916)

  • R.J. Riley, G.P. Neitzel, J. Fluid Mech. 359, 143 (1998)

    Google Scholar 

  • S. Rosenblat, G.M. Homsy, S.H. Davis, J. Fluid Mech. 120, 91 (1982)

    Google Scholar 

  • B.-C. Sim, A. Zebib, D. Schwabe, J. Fluid Mech. 491, 259 (2003)

    Google Scholar 

  • M.K. Smith, S.H. Davis, J. Fluid Mech. 132, 119 (1983)

    Google Scholar 

  • R. Temam, Navier–Stokes Equations and Nonlinear Functional Analysis (SIAM, Philadelphia, 1995)

  • L.N. Trefethen, Spectral Methods in Matlab (SIAM, Philadelphia, 2000)

  • S.H. Xin, P. Le Quere, Int. J. Num. Meth. Fluids 40, 981 (2002)

  • S.H. Xin, P. Le Quere, L.S. Tuckerman, Phys. Fluids 10, 850 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Herrero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrero, H. Chebyshev collocation methods in thermoconvective problems. Eur. Phys. J. Spec. Top. 146, 235–247 (2007). https://doi.org/10.1140/epjst/e2007-00183-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2007-00183-x

Keywords

Navigation