Skip to main content
Log in

Aspects of stochastic resonance in reaction–diffusion systems: The nonequilibrium-potential approach

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

We analyze several aspects of the phenomenon of stochastic resonance in reaction–diffusion systems, exploiting the nonequilibrium potential's framework. The generalization of this formalism (sketched in the appendix) to extended systems is first carried out in the context of a simplified scalar model, for which stationary patterns can be found analytically. We first show how system-size stochastic resonance arises naturally in this framework, and then how the phenomenon of array-enhanced stochastic resonance can be further enhanced by letting the diffusion coefficient depend on the field. A yet less trivial generalization is exemplified by a stylized version of the FitzHugh–Nagumo system, a paradigm of the activator–inhibitor class. After discussing for this system the second aspect enumerated above, we derive from it–through an adiabatic-like elimination of the inhibitor field–an effective scalar model that includes a nonlocal contribution. Studying the role played by the range of the nonlocal kernel and its effect on stochastic resonance, we find an optimal range that maximizes the system's response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)

    Google Scholar 

  • T. Wellens, V. Shatokin, A. Buchleitner, Rep. Prog. Phys. 67, 45 (2004)

    Google Scholar 

  • A.S. Pikovsky, J. Kurths, Phys. Rev. Lett. 78, 775 (1997)

    Google Scholar 

  • J.K. Douglas et al., Nature 365, 337 (1993); J.J. Collins et al., Nature 376, 236 (1995); S.M. Bezrukov, I. Vodyanoy, Nature 378, 362 (1995)

  • A. Guderian, G. Dechert, K. Zeyer, F. Schneider, J. Phys. Chem. 100, 4437 (1996); A. Förster, M. Merget, F. Schneider, J. Phys. Chem. 100, 4442 (1996); W. Hohmann, J. Müller, F.W. Schneider; J. Phys. Chem. 100, 5388 (1996)

    Google Scholar 

  • J.F. Lindner et al., Phys. Rev. E 53, 2081 (1996)

  • A.R. Bulsara, G. Schmera, Phys. Rev. E 47, 3734 (1993); P. Jung, U. Behn, E. Pantazelou, F. Moss, Phys. Rev. A 46, R1709 (1992); P. Jung, G. Mayer-Kress, Phys. Rev. Lett. 74, 2130 (1995); J.F. Lindner et al., Phys. Rev. Lett. 75, 3 (1995); F. Marchesoni, L. Gammaitoni, A.R. Bulsara, Phys. Rev. Lett. 76, 2609 (1996)

  • H.S. Wio, Phys. Rev. E 54, R3075 (1996); H.S. Wio, F. Castelpoggi, Unsolved Problems of Noise, Proc. Conf. UPoN'96, edited by C.R. Doering, L.B. Kiss, M. Schlesinger (World Scientific, Singapore, 1997), p. 229; F. Castelpoggi, H.S. Wio, Europhys. Lett. 38, 91 (1997)

  • F. Castelpoggi, H.S. Wio, Phys. Rev. E 57, 5112 (1998)

    Google Scholar 

  • H.S. Wio et al., Physica A 257, 275 (1998); M. Kuperman, H.S. Wio, G. Izús, R. Deza, Phys. Rev. E 57, 5122 (1998)

  • S. Bouzat, H.S. Wio, Phys. Rev. E 59, 5142 (1999)

    Google Scholar 

  • B. von Haeften, R. Deza, H.S. Wio, Phys. Rev. Lett. 84, 404 (2000)

    Google Scholar 

  • C.J. Tessone, H.S. Wio, P. Hänggi, Phys. Rev. E 62, 4623 (2000)

    Google Scholar 

  • M.A. Fuentes, R. Toral, H.S. Wio, Physica A 295, 114 (2001)

    Google Scholar 

  • H.S. Wio, S. Bouzat, B. von Haeften, in Proc. 21st IUPAP Int. Conf. on Statistical Physics, STATPHYS21, edited by A. Robledo, M. Barbosa, Physica A 306C, 140 (2002)

  • R. Graham, Instabilities and Nonequilibrium Structures, edited by E. Tirapegui, D. Villaroel (D. Reidel, Dordrecht, 1987); R. Graham, T. Tél, Phys. Rev. A 42, 4661 (1990); R. Graham, T. Tél, Instabilities and Nonequilibrium Structures III, edited by E. Tirapegui, W. Zeller (Kluwer, 1991); O. Descalzi, R. Graham, Phys. Lett. A 170, 84 (1992); O. Descalzi, R. Graham, Z. Phys. B 93, 509 (1994); H.S. Wio, 4th Granada Seminar in Computational Physics, edited by P. Garrido, J. Marro (Springer-Verlag, Berlin, 1997), p. 135

  • G. Izús et al., Phys. Rev. E 52, 129 (1995); G. Izús et al., Int. J. Mod. Phys. B 10, 1273 (1996)

  • G. Drazer, H.S. Wio, Physica A 240, 571 (1997)

  • D.H. Zanette, H.S. Wio, R. Deza, Phys. Rev. E 53, 353 (1996); F. Castelpoggi, H.S. Wio, D.H. Zanette, Int. J. Mod. Phys. B 11, 1717 (1997); G. Izús, R. Deza, H.S. Wio, Phys. Rev. E 58, 93 (1998); S. Bouzat, H.S. Wio, Phys. Lett. A 247, 297 (1998); G.G. Izús, R.R. Deza, H.S. Wio, Comp. Phys. Comm. 121-122, 406 (1999)

  • B. von Haeften et al., Phys. Rev. E 69, 021107 (2004); B. von Haeften et al., Noise in Complex Systems and Stochastic Dynamics, edited by Z. Gingl, J.M. Sancho, L. Schimansky-Geier, J. Kerstez, Proc. SPIE 5471, 258 (2004)

  • H.S. Wio, Noise and Fluctuations, Proc. 18th Int. Conf. on Noise and Fluctuations-ICNF2005, edited by T. Gonzalez, J. Mateos, D. Pardo, AIP 780, 55 (2005)

  • C.J. Tessone, H.S. Wio, Physica A 374, 46 (2006)

    Google Scholar 

  • H.S. Wio, An Introduction to Stochastic Processes and Nonequilibrium Statistical Physics (World Scientific, Singapore, 1994); A.S. Mikhailov, Foundations of Synergetics I (Springer-Verlag, Berlin, 1990)

  • G. Schmid, I. Goychuk, P. Hänggi, Europhys. Lett. 56, 22 (2001); ibid., Phys. Biol. 1, 61 (2004)

  • P. Jung, J.W. Shuai, Europhys. Lett. 56, 29 (2001); J.W. Shuai, P. Jung, Phys. Rev. Lett. 88, 068102 (2003)

    Google Scholar 

  • R. Toral, C. Mirasso, J. Gunton, Europhys. Lett. 61, 162 (2003)

    Google Scholar 

  • A. Pikovsky, A. Zaikin, M.A. de la Casa, Phys. Rev. Lett. 88, 050601 (2002)

  • C.J. Tessone, R. Toral, Physica A 351, 106 (2005)

    Google Scholar 

  • B. von Haeften, G.G. Izús, H.S. Wio, Phys. Rev. E 72, 021101 (2005)

    Google Scholar 

  • C.L. Schat, H.S. Wio, Physica A 180, 295 (1992)

  • P. Hänggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62, 251 (1990)

    Google Scholar 

  • A. Zaikin et al., Phys. Rev. Lett. 90, 030601 (2003)

  • J. García-Ojalvo, J.M. Sancho, Noise in Spatially Extended Systems (Springer-Verlag, New York, 1999)

  • It is worthwhile noting that when the parameter h is large enough, under some circumstances the coupling term might become negative, in what is known as “inhibitory coupling” Dayan. This is a very interesting kind of coupling that has attracted much attention, both in neural and chemical context, that we will not discuss here

  • P. Dayan, L.F. Abbott, Theoretical neuroscience: Computational and Mathematical Modeling of neural systems (MIT Press, Cambridge, 2001)

  • B. von Haeften, H.S. Wio, Physica A 376, 199 (2007)

    Google Scholar 

  • P. Ao, cond-mat/0302081 (2003); P. Ao, J. Phys. A 37, L25 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Wio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wio, H., Deza, R. Aspects of stochastic resonance in reaction–diffusion systems: The nonequilibrium-potential approach. Eur. Phys. J. Spec. Top. 146, 111–126 (2007). https://doi.org/10.1140/epjst/e2007-00173-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2007-00173-0

Keywords

Navigation