Skip to main content
Log in

Fluorescence studies of confinement in polymer films and nanocomposites: Glass transition temperature, plasticizer effects, and sensitivity to stress relaxation and local polarity

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

Confinement effects in polystyrene and poly(methyl methacrylate) films and nanocomposites are studied by fluorescence. The ability to employ an intensive measurable, the excited-state fluorescence lifetime, in defining the glass transition temperature, Tg, of polymers is demonstrated and compared to the use of an extensive measurable, fluorescence intensity. In addition, intrinsic fluorescence from the phenyl groups in polystyrene is used to determine the Tg-confinement effect in films as thin as ~15 nm. The decrease in Tg with decreasing film thickness (below ∼60 nm) agrees well with results obtained by extrinsic pyrene fluorescence. Dye label fluorescence is used to quantify the enhancement in Tg observed with decreasing thickness (below ~90 nm) in poly(methyl methacrylate) films; addition of 2–4 wt% dioctyl phthalate plasticizer reduces or eliminates the Tg-confinement effect in films down to 20 nm thickness. Intrinsic polystyrene fluorescence, which is sensitive to local conformation, is used to quantify the time scales (some tens of minutes) associated with stress relaxation in thin and ultrathin spin-coated films at Tg + 10 K. Finally, the shape of the fluorescence spectrum of pyrene doped at trace levels in polystyrene films and polystyrene-silica nanocomposites is used to determine effects of confinement on microenvironment polarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mundra, M., Ellison, C., Rittigstein, P. et al. Fluorescence studies of confinement in polymer films and nanocomposites: Glass transition temperature, plasticizer effects, and sensitivity to stress relaxation and local polarity. Eur. Phys. J. Spec. Top. 141, 143–151 (2007). https://doi.org/10.1140/epjst/e2007-00032-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2007-00032-0

Keywords

Navigation