Skip to main content
Log in

Effect of citral partitioning on structural and mechanical properties of lipid membranes

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Delineating the interactions of cellular metabolites with lipid membranes and their effects on membrane physical and mechanical properties constitutes a key step for comprehensively understanding their biological function. The plant metabolite—citral is widely used in biotechnological and cosmeceutical processes, but significant gaps remain in our understanding of how it affects cellular membranes that it interacts with. In this study, we unravel the molecular mechanisms underlying the interactions of citral with compositionally distinct model membranes using atomistic molecular dynamics simulations. Specifically, we investigate two distinct membrane compositions: the neutral phosphatidylcholine-phosphatidylethanolamine (DOPC:DOPE) bilayer, representing mammalian cell membranes and the anionic phosphatidylcholine-phosphatidylglycerol (DOPC:DOPG) bilayer, mimicking bacterial cell membranes. Our simulations reveal that citral molecules readily partition into both membranes without distinct composition-dependent effects. Monomeric citral molecules localize mainly at the interface of the acyl chain region of the lipids, and a few translocation events are sampled in the simulations. Interestingly, we observe small differences in lipid fluidity although the citral molecules significantly influence the rigidity of lipid bilayers, and a higher bending modulus was observed in DOPC:DOPE lipid bilayers compared to DOPC:DOPG bilayers. Further, citral partitioning induces an increased tendency for lipid demixing in DOPC:DOPE membranes, as evidenced by the decreased values of the Shannon entropy. Our work is an important step to elucidate the molecular processes that underlie the differential impact of cell metabolites on compositionally distinct lipid membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

This manuscript has data included as electronic supplementary material.

References

  1. G.L. Nicolson, G.F. Mattos, The fluid-mosaic model of cell membranes: a brief introduction, historical features, some general principles, and its adaptation to current information. Biochim. Biophys. Acta-Biomembr. 1865(4), 184135 (2023). https://doi.org/10.1016/j.bbamem.2023.184135

    Article  CAS  PubMed  Google Scholar 

  2. P.V. Escribá, J.M. González-Ros, F.M. Goñi, P.K. Kinnunen, L. Vigh, L. Sánchez-Magraner, A.M. Fernández, X. Busquets, I. Horváth, G. Barceló-Coblijn, Membranes: A meeting point for lipids, proteins and therapies. J. Cell. Mol. Med. 12(3), 829–875 (2008). https://doi.org/10.1111/j.1582-4934.2008.00281.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. I. Budin, J.W. Szostak, Expanding roles for diverse physical phenomena during the origin of life. Annu. Rev. Biophys. 39, 245–263 (2010). https://doi.org/10.1146/annurev.biophys.050708.133753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. J.L. Robertson, The lipid bilayer membrane and its protein constituents. J. Gen. Physiol. 150(11), 1472–1483 (2018). https://doi.org/10.1085/jgp.201812153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. G. Meer, A.I. Kroon, Lipid map of the mammalian cell. J. Cell Sci. 124(1), 5–8 (2011). https://doi.org/10.1242/jcs.071233

    Article  CAS  PubMed  Google Scholar 

  6. I. Levental, K.R. Levental, F.A. Heberle, Lipid rafts: Controversies resolved, mysteries remain. Trends Cell Biol. 30(5), 341–353 (2020). https://doi.org/10.1016/j.tcb.2020.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. D. Lingwood, K. Simons, Lipid rafts as a membrane-organizing principle. Science 327(5961), 46–50 (2010). https://doi.org/10.1126/science.1174621

    Article  ADS  CAS  PubMed  Google Scholar 

  8. S. Haldar, M. Kombrabail, G. Krishnamoorthy, A. Chattopadhyay, Depth-dependent heterogeneity in membranes by fluorescence lifetime distribution analysis. J. Phys. Chem. Lett. 3(18), 2676–2681 (2012). https://doi.org/10.1021/jz3012589

    Article  CAS  PubMed  Google Scholar 

  9. J.F. Nagle, S. Tristram-Nagle, Structure of lipid bilayers. Biochim. Biophys. Acta. 1469(3), 159–195 (2000). https://doi.org/10.1016/s0304-4157(00)00016-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. O.S. Ollila, G. Pabst, Atomistic resolution structure and dynamics of lipid bilayers in simulations and experiments. Biochim. Biophys. Acta-Biomembr. 1858(10), 2512–2528 (2016). https://doi.org/10.1016/j.bbamem.2016.01.019

    Article  CAS  Google Scholar 

  11. G. Van Meer, D.R. Voelker, G.W. Feigenson, Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9(2), 112–124 (2008). https://doi.org/10.1038/nrm2330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. T. Harayama, H. Riezman, Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19(5), 281–296 (2018). https://doi.org/10.1038/nrm.2017.138

    Article  CAS  PubMed  Google Scholar 

  13. K. Jacobson, O.G. Mouritsen, R.G. Anderson, Lipid rafts: At a crossroad between cell biology and physics. Nat. Cell Biol. 9(1), 7–14 (2007). https://doi.org/10.1038/ncb0107-7

    Article  CAS  PubMed  Google Scholar 

  14. R. Friedman, S. Khalid, C. Aponte-Santamaría, E. Arutyunova, M. Becker, K.J. Boyd, M. Christensen, J.T. Coimbra, S. Concilio, C. Daday et al., Understanding conformational dynamics of complex lipid mixtures relevant to biology. J. Membr. Biol. 251, 609–631 (2018). https://doi.org/10.1007/s00232-018-0050-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. E. Sezgin, I. Levental, S. Mayor, C. Eggeling, The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 18(6), 361–374 (2017). https://doi.org/10.1038/nrm.2017.16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. P. Bassereau, R. Jin, T. Baumgart, M. Deserno, R. Dimova, V.A. Frolov, P.V. Bashkirov, H. Grubmüller, R. Jahn, H.J. Risselada et al., The 2018 biomembrane curvature and remodeling roadmap. J. Phys. D: Appl. Phys. 51(34), 343001 (2018). https://doi.org/10.1088/1361-6463/aacb98

    Article  CAS  PubMed  Google Scholar 

  17. J.L. MacCallum, D.P. Tieleman, in Current Topics in Membranes. Interactions Between Small Molecules and Lipid Bilayers, vol. 60 (Elsevier, New York, 2008), pp. 227–256. https://doi.org/10.1016/S1063-5823(08)00008-2

  18. N.J. Yang, M.J. Hinner, Getting across the cell membrane: an overview for small molecules, peptides, and proteins. Met. Mol. Biol. (2014). https://doi.org/10.1007/978-1-4939-2272-7_3

    Article  Google Scholar 

  19. C. Martinotti, L. Ruiz-Perez, E. Deplazes, R.L. Mancera, Molecular dynamics simulation of small molecules interacting with biological membranes. ChemPhysChem 21(14), 1486–1514 (2020). https://doi.org/10.1002/cphc.202000219

    Article  CAS  PubMed  Google Scholar 

  20. J. Frallicciardi, J. Melcr, P. Siginou, S.J. Marrink, B. Poolman, Membrane thickness, lipid phase and sterol type are determining factors in the permeability of membranes to small solutes. Nat. Commun. (2022). https://doi.org/10.1038/s41467-022-29272-x

    Article  PubMed  PubMed Central  Google Scholar 

  21. D. Sengupta, J.C. Smith, G.M. Ullmann, Partitioning of amino-acid analogues in a five-slab membrane model. Biochim. Biophys. Acta-Biomembr. 1778(10), 2234–2243 (2008). https://doi.org/10.1016/j.bbamem.2008.06.014

    Article  CAS  Google Scholar 

  22. M. Orsi, W.E. Sanderson, J.W. Essex, Permeability of small molecules through a lipid bilayer: A multiscale simulation study. J. Phys. Chem. B 113(35), 12019–12029 (2009). https://doi.org/10.1021/jp903248s

    Article  CAS  PubMed  Google Scholar 

  23. B.M. Schmidt, D.M. Ribnicky, P.E. Lipsky, I. Raskin, Revisiting the ancient concept of botanical therapeutics. Nat. Chem. Biol. 3(7), 360–366 (2007). https://doi.org/10.1038/nchembio0707-360

    Article  CAS  PubMed  Google Scholar 

  24. D.C. Arruda, D.C. Miguel, J.K.U. Yokoyama-Yasunaka, A.M. Katzin, S.R.B. Uliana, Inhibitory activity of limonene against leishmania parasites in vitro and in vivo. Biomed. Pharmacother. 63(9), 643–649 (2009). https://doi.org/10.1016/j.biopha.2009.02.004

    Article  CAS  PubMed  Google Scholar 

  25. Wu, C.-S., Chen, Y.-J., Cheni, J.J.W., Shieh, J.-J., Huang, C.-H., Lin, P.-S., Chang, G.-C., Chang, J.-T., Lin, C.-C.: Terpinen-4-ol induces apoptosis in human nonsmall cell lung cancer in vitro and in vivo. In: eCAM 2012, 1–13 (2012) https://doi.org/10.1155/2012/818261

  26. H. Yang, Q. Ping Dou, Targeting apoptosis pathway with natural terpenoids: Implications for treatment of breast and prostate cancer. Curr. Drug Targets 11(6), 733–744 (2010). https://doi.org/10.2174/138945010791170842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. M.E. Araruna, C. Serafim, E.A. Júnior, C. Hiruma-Lima, M. Diniz, L. Batista, Intestinal anti-inflammatory activity of terpenes in experimental models (2010–2020): A review. Molecules 25(22), 5430 (2020). https://doi.org/10.3390/molecules25225430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. S.A. Mendanha, A. Alonso, Effects of terpenes on fluidity and lipid extraction in phospholipid membranes. Biophys. Chem. 198, 45–54 (2015). https://doi.org/10.1016/j.bpc.2015.02.001

    Article  CAS  PubMed  Google Scholar 

  29. A. Zielińska, C. Martins-Gomes, N.R. Ferreira, A.M. Silva, I. Nowak, E.B. Souto, Anti-inflammatory and anti-cancer activity of citral: optimization of citral-loaded solid lipid nanoparticles (SLN) using experimental factorial design and LUMiSizer®. Int. J. Pharm. 553(1–2), 428–440 (2018). https://doi.org/10.1016/j.ijpharm.2018.10.065

    Article  CAS  PubMed  Google Scholar 

  30. C. Bailly, Targets and pathways involved in the antitumor activity of citral and its stereo-isomers. Eur. J. Pharmacol. 871, 172945 (2020). https://doi.org/10.1016/j.ejphar.2020.172945

    Article  CAS  PubMed  Google Scholar 

  31. N. Nordin, S.K. Yeap, H.S. Rahman, N.R. Zamberi, N.E. Mohamad, N. Abu, M.J. Masarudin, R. Abdullah, N.B. Alitheen, Antitumor and anti-metastatic effects of citral-loaded nanostructured lipid carrier in 4t1-induced breast cancer mouse model. Molecules 25(11), 2670 (2020). https://doi.org/10.3390/molecules25112670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. S.A. Singh, Y.A. Potdar, R.S. Pawar, S.V. Bhat, Antibacterial potential of citral derivatives. Nat. Prod. Commun. 6(9), 1221–1224 (2011)

    CAS  PubMed  Google Scholar 

  33. A. Tetard, S. Foley, G.L.A. Mislin, J.-M. Brunel, E. Oliva, F.T. Anzola, A. Zedet, B. Cardey, Y. Pellequer, C. Ramseyer, P. Plésiat, C. Llanes, Negative impact of citral on susceptibility of pseudomonas aeruginosa to antibiotics. Front. Microbiol. (2021). https://doi.org/10.3389/fmicb.2021.709838

    Article  PubMed  PubMed Central  Google Scholar 

  34. R.-Y. Li, X.-M. Wu, X.-H. Yin, Y.-H. Long, M. Li, Naturally produced citral can significantly inhibit normal physiology and induce cytotoxicity on magnaporthe grisea. Pestic. Biochem. Physiol. 118, 19–25 (2015). https://doi.org/10.1016/j.pestbp.2014.10.015

    Article  CAS  PubMed  Google Scholar 

  35. G. Shahane, W. Ding, M. Palaiokostas, M. Orsi, Physical properties of model biological lipid bilayers: insights from all-atom molecular dynamics simulations. J. Mol. Model. (2019). https://doi.org/10.1007/s00894-019-3964-0

    Article  PubMed  Google Scholar 

  36. R.M. Venable, A. Krämer, R.W. Pastor, Molecular dynamics simulations of membrane permeability. Chem. Rev. 119(9), 5954–5997 (2019). https://doi.org/10.1021/acs.chemrev.8b00486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. W.J. Allen, J.A. Lemkul, D.R. Bevan, GridMAT-MD: a grid-based membrane analysis tool for use with molecular dynamics. J. Comput. Chem. 30(12), 1952–1958 (2008). https://doi.org/10.1002/jcc.21172

    Article  CAS  Google Scholar 

  38. M. Chavent, T. Reddy, J. Goose, A.C.E. Dahl, J.E. Stone, B. Jobard, M.S.P. Sansom, Methodologies for the analysis of instantaneous lipid diffusion in md simulations of large membrane systems. Faraday Discuss. 169, 455–475 (2014). https://doi.org/10.1039/c3fd00145h

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. G. Lukat, J. Krüger, B. Sommer, APL@Voro: a voronoi-based membrane analysis tool for GROMACS trajectories. J. Chem. Inf. Model. 53(11), 2908–2925 (2013). https://doi.org/10.1021/ci400172g

    Article  CAS  PubMed  Google Scholar 

  40. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W. Stuetzle, Surface reconstruction from unorganized points. ACM SIGGRAPH Comput. Graph. 26(2), 71–78 (1992). https://doi.org/10.1145/142920.134011

    Article  Google Scholar 

  41. R. Guixà-González, I. Rodriguez-Espigares, J.M. Ramírez-Anguita, P. Carrió-Gaspar, H. Martinez-Seara, T. Giorgino, J. Selent, MEMBPLUGIN: studying membrane complexity in VMD. Bioinformatics 30(10), 1478–1480 (2014). https://doi.org/10.1093/bioinformatics/btu037

    Article  CAS  PubMed  Google Scholar 

  42. H. Malshikare, S. Prakash, D. Sengupta, Differential membrane curvature induced by distinct protein conformers Soft Matter 19(22), 4021–4028 (2023). https://doi.org/10.1039/D3SM00218G

  43. S.J. Marrink, V. Corradi, P.C.T. Souza, H.I. Ingólfsson, D.P. Tieleman, M.S.P. Sansom, Computational modeling of realistic cell membranes. Chemi. Rev. 119(9), 6184–6226 (2019). https://doi.org/10.1021/acs.chemrev.8b00460

    Article  CAS  Google Scholar 

  44. R. Wadhwa, N.S. Yadav, S.P. Katiyar, T. Yaguchi, C. Lee, H. Ahn, C.-O. Yun, S.C. Kaul, D. Sundar, Molecular dynamics simulations and experimental studies reveal differential permeability of withaferin-A and withanone across the model cell membrane. Sci. Rep. 11, 2352 (2021). https://doi.org/10.1038/s41598-021-81729-z

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. B. Van Oosten, D. Marquardt, I. Komljenović, J.P. Bradshaw, E. Sternin, T.A. Harroun, Small molecule interaction with lipid bilayers: a molecular dynamics study of chlorhexidine. J. Mol. Graph. Model. 48, 96–104 (2014). https://doi.org/10.1016/j.jmgm.2013.12.007

    Article  CAS  PubMed  Google Scholar 

  46. T. Jin, S.J. Patel, R.C. Van Lehn, Molecular simulations of lipid membrane partitioning and translocation by bacterial quorum sensing modulators. PLoS One 16(2), 0246187 (2021). https://doi.org/10.1371/journal.pone.0246187

    Article  CAS  Google Scholar 

  47. Q.P. Pham, D. Topgaard, E. Sparr, Cyclic and linear monoterpenes in phospholipid membranes: phase behavior, bilayer structure, and molecular dynamics. Langmuir 31(40), 11067–11077 (2015). https://doi.org/10.1021/acs.langmuir.5b00856

    Article  CAS  PubMed  Google Scholar 

  48. S. Raza, M. Miller, B. Hamberger, J.V. Vermaas, Plant terpenoid permeability through biological membranes explored via molecular simulations. J. Phys. Chem. B 127(5), 1144–1157 (2023). https://doi.org/10.1021/acs.jpcb.2c07209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. P. Bjelkmar, P. Larsson, M.A. Cuendet, B. Hess, E. Lindahl, Implementation of the CHARMM force field in GROMACS: analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J. Chem. Theory Comput. 6, 459–466 (2010). https://doi.org/10.1021/ct900549r

    Article  CAS  PubMed  Google Scholar 

  50. B. Hess, C. Kutzner, D. Spoel, E. Lindahl, Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008). https://doi.org/10.1021/ct700301q

    Article  CAS  PubMed  Google Scholar 

  51. K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, A.D. MacKerell Jr., CHARMM General Force Field (CGenFF): a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31(4), 671–690 (2010). https://doi.org/10.1002/jcc.21367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. W. Yu, X. He, K. Vanommeslaeghe, A.D. MacKerell Jr., Extension of the CHARMM General Force Field to sulfonyl-containing compounds and its utility in biomolecular simulations. J. Comput. Chem. 33(31), 2451–2468 (2012). https://doi.org/10.1002/jcc.23067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. D. Saraf, S. Prakash, A. Pinjari, B. Pujari, D. Sengupta, Surface-induced demixing of self-assembled isomeric mixtures of citral. J. Mol. Liq. 381, 121803 (2023). https://doi.org/10.1016/j.molliq.2023.121803

    Article  CAS  Google Scholar 

  54. B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan, M. Karplus, CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983). https://doi.org/10.1002/jcc.540040211

    Article  CAS  Google Scholar 

  55. W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983). https://doi.org/10.1063/1.445869

    Article  ADS  CAS  Google Scholar 

  56. H.J.C. Berendsen, J.P.M. Postma, W.F. Gunstereni, A. DiNola, J.R. Haak, Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984). https://doi.org/10.1063/1.448118

    Article  ADS  CAS  Google Scholar 

  57. H.J.C. Berendsen, D. Spoel, R. Drunen, GROMACS: A message-passing parallel molecular dynamics implementation. Comp. Phys. Comm. 91, 43–56 (1995). https://doi.org/10.1016/0010-4655(95)00042-E

    Article  ADS  CAS  Google Scholar 

  58. M. Parinello, A. Rahman, Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182 (1981). https://doi.org/10.1063/1.328693

    Article  ADS  Google Scholar 

  59. B. Hess, H. Bekker, H.J.C. Berendsen, J.G.E.M. Fraaije, LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997). https://doi.org/10.1063/1.3382344

    Article  CAS  Google Scholar 

  60. W. Humphrey, A. Dalke, K. Schulten, VMD-visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996). https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  61. S. Buchoux, FATSLiM: a fast and robust software to analyze MD simulations of membranes. Bioinformatics 33(1), 133–134 (2016). https://doi.org/10.1093/bioinformatics/btw563

    Article  CAS  PubMed  Google Scholar 

  62. M. Camesasca, M. Kaufman, I. Manas-Zloczower, Quantifying fluid mixing with the shannon entropy. Macromol. Theory Simul. 15, 595–607 (2006). https://doi.org/10.1002/mats.200600037

    Article  CAS  Google Scholar 

  63. W. Helfrich, Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C 28, 693–703 (1973)

    Article  CAS  PubMed  Google Scholar 

  64. F.M. Thakkar, P.K. Maiti, V. Kumaran, K.G. Ayappa, Verifying scalings for bending rigidity of bilayer membranes using mesoscale models. Soft Matter 7(8), 3963 (2011). https://doi.org/10.1039/c0sm00876a

    Article  ADS  CAS  Google Scholar 

  65. R. Vaiwala, P. Sharma, M. Puranik, K.G. Ayappa, Developing a coarse-grained model for bacterial cell walls: evaluating mechanical properties and free energy barriers. J. Chem. Theory Comput. 16(8), 5369–5384 (2020). https://doi.org/10.1021/acs.jctc.0c00539

    Article  CAS  PubMed  Google Scholar 

  66. V. Zoni, P. Campomanes, S. Vanni, Investigating the structural properties of hydrophobic solvent-rich lipid bilayers. Soft Matter 17(21), 5329–5335 (2021). https://doi.org/10.1039/d0sm02270e

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. G. Abbas, A.E. Cardenas, R. Elber, The structures of heterogeneous membranes and their interactions with an anticancer peptide: a molecular dynamics study. Life 12(10), 1473 (2022). https://doi.org/10.3390/life12101473

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. M.F. Renne, R. Ernst, Membrane homeostasis beyond fluidity: control of membrane compressibility. Trends Biochem. Sci. 48, 963–977 (2023). https://doi.org/10.1016/j.tibs.2023.08.004

  69. D. Bochicchio, L. Monticelli, The Membrane Bending Modulus in Experiments and Simulations (Elsevier, 2016), pp.117–143. https://doi.org/10.1016/bs.abl.2016.01.003

    Book  Google Scholar 

  70. T. Mandal, S. Gupta, J. Soni, Simulation study of membrane bending by protein crowding: a case study with the epsin n-terminal homology domain. Soft Matter 19(27), 5092–5102 (2023). https://doi.org/10.1039/d3sm00280b

    Article  ADS  CAS  PubMed  Google Scholar 

  71. S. Salinas-Almaguer, M. Mell, V.G. Almendro-Vedia, M. Calero, K.C.M. Robledo-Sánchez, C. Ruiz-Suarez, T. Alarcón, R.A. Barrio, A. Hernández-Machado, F. Monroy, Membrane rigidity regulates E. coli proliferation rates. Sci. Rep. (2022). https://doi.org/10.1038/s41598-022-04970-0

    Article  PubMed  PubMed Central  Google Scholar 

  72. A. Berquand, M.-P. Mingeot-Leclercq, Y.F. Dufrêne, Real-time imaging of drug-membrane interactions by atomic force microscopy. Biochim. Biophys. Acta Biomembr. 1664(2), 198–205 (2004). https://doi.org/10.1016/j.bbamem.2004.05.010

    Article  CAS  Google Scholar 

  73. N. Fa, L. Lins, P.J. Courtoy, Y. Dufrêne, P. Van Der Smissen, R. Brasseur, D. Tyteca, M.-P. Mingeot-Leclercq, Decrease of elastic moduli of dopc bilayers induced by a macrolide antibiotic, azithromycin. Biochim. Biophys. Acta Biomembr. 1768(7), 1830–1838 (2007). https://doi.org/10.1016/j.bbamem.2007.04.013

    Article  CAS  Google Scholar 

  74. L.J. Pike, The challenge of lipid rafts. J. Lipid Res. 50, 323–328 (2009). https://doi.org/10.1194/jlr.r800040-jlr200

    Article  Google Scholar 

  75. G.W. Feigenson, Phase diagrams and lipid domains in multicomponent lipid bilayer mixtures. Biochim. Biophys. Acta Biomembr. 1788(1), 47–52 (2009). https://doi.org/10.1016/j.bbamem.2008.08.014

    Article  CAS  Google Scholar 

  76. J. Fan, M. Sammalkorpi, M. Haataja, Formation and regulation of lipid microdomains in cell membranes: theory, modeling, and speculation. FEBS Lett. 584(9), 1678–1684 (2009). https://doi.org/10.1016/j.febslet.2009.10.051

    Article  CAS  PubMed  Google Scholar 

  77. G.B. Brandani, M. Schor, C.E. MacPhee, H. Grubmüller, U. Zachariae, D. Marenduzzo, Quantifying disorder through conditional entropy: an application to fluid mixing. PLoS One 8(6), 65617 (2013). https://doi.org/10.1371/journal.pone.0065617

    Article  ADS  CAS  Google Scholar 

  78. G.A. Pantelopulos, T. Nagai, A. Bandara, A. Panahi, J.E. Straub, Critical size dependence of domain formation observed in coarse-grained simulations of bilayers composed of ternary lipid mixtures. J. Chem. Phys. (2017). https://doi.org/10.1063/1.4999709

    Article  PubMed  PubMed Central  Google Scholar 

  79. J. Barnoud, G. Rossi, S.J. Marrink, L. Monticelli, Hydrophobic compounds reshape membrane domains. PLoS Comput. Biol. 10(10), 1003873 (2014). https://doi.org/10.1371/journal.pcbi.1003873

    Article  ADS  CAS  Google Scholar 

  80. W.F.D. Bennett, J.-E. Shea, D.P. Tieleman, Phospholipid chain interactions with cholesterol drive domain formation in lipid membranes. Biophys. J. 114(11), 2595–2605 (2018). https://doi.org/10.1016/j.bpj.2018.04.022

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. A. Centi, A. Dutta, S.H. Parekh, T. Bereau, Inserting small molecules across membrane mixtures: Insight from the potential of mean force. Biophys. J. 118(6), 1321–1332 (2020). https://doi.org/10.1016/j.bpj.2020.01.039

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. D. Drabik, M. Drab, S. Penič, A. Iglič, A. Czogalla, Investigation of nano- and microdomains formed by ceramide 1 phosphate in lipid bilayers. Sci. Rep. (2023). https://doi.org/10.1038/s41598-023-45575-5

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Deepashri Saraf and Sudha Porte would like to acknowledge CSIR (India) for financial support through research associate fellowship and junior research fellowship, respectively. D.S. acknowledges the support of the Bioinformatics center from DBT, India (BT/PR40128/BTIS/137/43/2022) hosted at CSIR-NCL, India. We gratefully acknowledge computing resources from CSIR-NCL, CSIR-Fourth Paradigm Institute and PARAM Brahma Facility under the National Supercomputing Mission, Government of India at the Indian Institute of Science Education and Research (IISER) Pune. Deepashri would like to thank Amit Naglekar and Siddhanta Nikte for the insightful discussions on analysis tools and image rendering. We thank Prof. Ganapathy Ayappa and Prof. Anand Srivastava for helpful discussions. The authors would like to thank our research group members for critically reading the manuscript.

Funding

Bioinformatic center, DBT-India (BT/PR40128/BTIS/137/43/2022).

Author information

Authors and Affiliations

Authors

Contributions

Deepashri Saraf: data curation, formal analysis, investigation, methodology, software, writing—original draft preparation. Sudha Porte: formal analysis, investigation, methodology, writing—review and editing. Durba Sengupta: conceptualization, funding acquisition, project administration, resources, supervision, validation, writing—review and editing.

Corresponding author

Correspondence to Durba Sengupta.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 3775 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saraf, D., Porte, S. & Sengupta, D. Effect of citral partitioning on structural and mechanical properties of lipid membranes. Eur. Phys. J. Spec. Top. (2024). https://doi.org/10.1140/epjs/s11734-024-01147-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjs/s11734-024-01147-w

Navigation