Skip to main content
Log in

Pattern of “sleep spindles” in obstructive sleep apnea patients

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Obstructive sleep apnea (OSA) is a very serious and multifactorial sleep disorder that is closely related to the disruption of sleep homeostasis. It is known that such sleep encephalographic (EEG) phenomenon as sleep spindles (SSs) supports sleep stability and may display a sleep protective function. Thus, it is of particular interest to assess the SS pattern in OSA patients, which is the aim of the present research. We investigated whether SS activity could be altered in patients with moderate degree of OSA compared with non-OSA subjects. Twenty-nine meddle-aged OSA patients (26 male and 3 female) and 26 controls underwent full-night polysomnography (PSG). SSs were automatically detected during stage 2 (N2) of non-rapid eye movements. The SS activity characteristics involved total number, mean density, mean maximum amplitude, and mean frequency. All differences were considered statistically significant at p < 0.05. We noted a significant decrease in the density and number of central SSs in patients with OSA compared to controls; however, the amplitude is significantly higher in OSA subjects. To summarize, our results show that OSA leads to significant disruption of SS density, reduction of their number, and frequency in N2 sleep stages. These findings can be evidence of the extinction of a brain protective mechanism against exciting stimuli during apnea episodes in OSA patients with a long duration of sleep disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

References

  1. C. Guilleminault, W.C. Demen, Sleep Apnoea Syndromes (Liss Inc, 1978), p.374

    Google Scholar 

  2. A.M. Vein, T.S. Eligulashvili, M.G. Poluektov, Sleep Apnea Syndrome and Other Sleep-Related Breathing Disorders: Clinical Picture, Diagnosis, Treatment (M. Eidos Media, 2002), p.310

    Google Scholar 

  3. J.J. Lee, K.M. Sundar, Evaluation and management of adults with obstructive sleep apnea syndrome. Lung (2021). https://doi.org/10.1007/s00408-021-00426-w

    Article  Google Scholar 

  4. P.E. Peppard, T. Young, J.H. Barnet, M. Palta, E.W. Hagen, K.M. Hla, Increased prevalence of sleep-disordered breathing in adults. Am. J. Epidemiol. 177(9), 1006–1014 (2013). https://doi.org/10.1093/aje/kws342

    Article  Google Scholar 

  5. J.M. Dzierzewski, N. Dautovich, S. Ravyts, Sleep and cognition in older adults. Sleep Med. Clin. 13(1), 93–106 (2018). https://doi.org/10.1016/j.jsmc.2017.09.009

    Article  Google Scholar 

  6. R.M. Benca, M. Teodorescu, Sleep physiology and disorders in aging and dementia. Handb. Clin. Neurol. 167, 477–493 (2019). https://doi.org/10.1016/B978-0-12-804766-8.00026-1

    Article  Google Scholar 

  7. A.E. Mullins, K. Kam, A. Parekh, O.M. Bubu, R.S. Osorio, A.W. Varga, Obstructive sleep apnea and its treatment in aging: effects on Alzheimer’s disease biomarkers, cognition, brain structure and neurophysiology. Neurobiol. Dis.. Dis. 145, 105054 (2020). https://doi.org/10.1016/j.nbd.2020.105054

    Article  Google Scholar 

  8. E.B. Ukhinov, I.M. Madaeva, O.N. Berdina, L.V. Rychkova, L.I. Kolesnikova, S.I. Kolesnikov, Features of the EEG pattern of sleep spindles and its diagnostic significance in ontogeny. Bull. Exp. Biol. Med. 173(4), 399–408 (2022)

    Article  Google Scholar 

  9. C. Iber, S. Ancoli-Israel, A. Chesson, S.F. Quan, The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology, and Technical Specification (American Academy of Sleep Medicine, Westchester, IL, 2007)

    Google Scholar 

  10. S. Astori, R.D. Wimmer, A. Lüthi, Manipulating sleep spindles expanding views on sleep, memory, and disease. Trends Neurosci. 36(12), 738–748 (2013). https://doi.org/10.1016/j.tins.2013.10.001

    Article  Google Scholar 

  11. M. Vardanian, L. Ravdin, Cognitive complaints and comorbidities in obstructive sleep apnea. Sleep Med. Clin. 17(4), 647–656 (2022). https://doi.org/10.1016/j.jsmc.2022.07.009

    Article  Google Scholar 

  12. D.Z. Carvalho, G.J. Gerhardt Dellagustin, E.L. de Santa-Helena, N. Lemke, A.Z. Segal, S.V. Schönwald, Loss of sleep spindle frequency deceleration in obstructive sleep apnea. Clin. Neurophysiol. 125, 306–312 (2014). https://doi.org/10.1016/j.clinph.2013.07.005

    Article  Google Scholar 

  13. C. Davies, J. Harrington, Impact of obstructive sleep apnea on neurocognitive function and impact of continuous positive air pressure. Sleep Med. Clin. V11(3), 287–298 (2016). https://doi.org/10.1016/j.jsmc.2016.04.006

    Article  Google Scholar 

  14. I. Madaeva, O. Berdina, L. Rychkova, O. Bugun, Sleep spindle characteristics in overweight adolescents with obstructive sleep apnea syndrome. Sleep Biol. Rhythms 15(3), 251–257 (2017). https://doi.org/10.1007/s41105-017-0104-z

    Article  Google Scholar 

  15. O. Berdina, I. Madaeva, S. Bolshakova, E. Ukhinov, L. Sholokhov, L. Rychkova, Sleep EEG oscillation associations with plasma amyloid-β42 in apneic adolescents: a cross section study. Eur. Phys. J. Spec. Top. 232, 547–555 (2023). https://doi.org/10.1140/epjs/s11734-023-00777-w

    Article  Google Scholar 

  16. American Academy of Sleep Medicine, International classification of sleep disorders, in Diagnostic and Coding Manual, 3rd edn. (Darien, IL, American Academy of Sleep Medicine, 2014). https://doi.org/10.1007/978-1-4939-6578-6_27

    Chapter  Google Scholar 

  17. V.K. Kapur, D.H. Auckley, S. Chowdhuri, D.C. Kuhlmann, R. Mehra, K. Ramar, C.G. Harrod, Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: an American academy of sleep medicine clinical practice guideline. J. Clin. Sleep Med. 13(3), 479–504 (2017). https://doi.org/10.5664/jcsm.6506

    Article  Google Scholar 

  18. R.B. Berry, R. Budhiraja, D.J. Gottlieb et al., Rules for scoring respiratory events in sleep: update of the 2007 AASM manual for the scoring of sleep and associated events. Deliberations of the sleep apnea definitions task force of the American academy of sleep medicine. J. Clin. Sleep Med.Clin Sleep Med. 8(05), 597–619 (2012). https://doi.org/10.5664/jcsm.2172

    Article  Google Scholar 

  19. S.M. Fogel, C.T. Smith, The function of the sleep spindle: a physiological index of intelligence and a mechanism for sleep-dependent memory consolidation. Neurosci. Biobehav. Rev. 35(5), 1154–1165 (2011). https://doi.org/10.1016/j.neubiorev.2010.12.003

    Article  Google Scholar 

  20. L.M.J. Fernandez, A. Lüthi, Sleep spindles: mechanisms and functions. Physiol. Rev. 100(2), 805–868 (2020). https://doi.org/10.1152/physrev.00042.2018

    Article  Google Scholar 

  21. I.M. Madaeva, O.N. Berdina, N.V. Semenova, L.I. Kolesnikova, Evaluation of the structural organization of sleep in obstructive apnea syndrome from the perspective of modern pathophysiology. Zhurnal Nevrol Psikhiatrii imeni S.S. Korsakova 120(92), 80–84 (2020). https://doi.org/10.17116/jnevro202012009280. (in Russian)

    Article  Google Scholar 

  22. I.M. Madaeva, N.A. Kurashova, N.V. Semenova, E.B. Ukhinov, O.N. Berdina, T.A. Bairova, A.V. Belskikh, L.I. Kolesnikova, S.I. Kolesnikov, Obstructive sleep apnea syndrome: association of serum melatonin, increased daytime sleepiness, and intermitting night hypoxemia. Pulmonologiya 31(6), 768–775 (2021). https://doi.org/10.18093/0869-0189-2021-31-6-768-775. (in Russian)

    Article  Google Scholar 

  23. I.M. Madaeva, O.N. Berdina, N.A. Kurashova et al., Sleep apnea and serum serotonin level pre- and post-PAP therapy: a preliminary study. Neurol Ther 10, 1095–1102 (2021). https://doi.org/10.1007/s40120-021-00290-z

    Article  Google Scholar 

  24. S.V. Schönwald, D.Z. Carvalho, E.L. de Santa-Helena, N. Lemke, G.J. Gerhardt, Topography-specific spindle frequency changes in obstructive sleep apnea. BMC Neurosci. 31(13), 89 (2012). https://doi.org/10.1186/1471-2202-13-89.PMID:22985414;PMCID:PMC3496607

    Article  Google Scholar 

  25. W. Li, Y. Duan, J. Yan, H. Gao, X. Li, Association between loss of sleep-specific waves and age, sleep efficiency, body mass index, and apnea-hypopnea index in human N3 sleep. Aging Dis. 11, 73–81 (2020). https://doi.org/10.14336/AD.2019.0420

    Article  Google Scholar 

  26. H. Mohammadi, A. Aarabi, M. Rezaei, H. Khazaie, S. Brand, Sleep spindle characteristics in obstructive sleep apnea syndrome (OSAS). Front. Neurol. 25(12), 598632 (2021). https://doi.org/10.3389/fneur.2021.598632

    Article  Google Scholar 

  27. S.L. Himanen, J. Virkkala, E. Huupponen, J. Hasan, Spindle frequency remains slow in sleep apnea patients throughout the night. Sleep Med. 4(4), 361–366 (2003). https://doi.org/10.1016/s1389-9457(03)00155-2

    Article  Google Scholar 

  28. E. Huupponen, S.L. Himanen, J. Hasan, A. Värri, Automatic analysis of electro-encephalogram sleep spindle frequency throughout the night. Med. Biol. Eng. Comput. 41(6), 727–732 (2003). https://doi.org/10.1007/BF02349981

    Article  Google Scholar 

  29. V. Guadagni, H. Byles, A.V. Tyndall, J. Parboosingh, R.S. Longman, D.B. Hogan, P.J. Hanly, M. Younes, M.J. Poulin, Association of sleep spindle characteristics with executive functioning in healthy sedentary middle-aged and older adults. J. Sleep Res. 30(2), e13037 (2021). https://doi.org/10.1111/jsr.13037

    Article  Google Scholar 

  30. Y. Ozkan, A. Deniz, Effect of CPAP on sleep spindles in patients with OSA. Respir. Physiol. Neurobiol. 247, 71–73 (2018). https://doi.org/10.1016/j.resp.2017.09.008

    Article  Google Scholar 

  31. O.M. Weiner, T.T. Dang-Vu, Spindle oscillations in sleep disorders: a systematic review. Neural Plast.Plast. 2016, 1–30 (2016). https://doi.org/10.1155/2016/7328725

    Article  Google Scholar 

  32. R.G. Averkin, V. Szemenyei, S. Bordé, G. Tamás, Identified Cellular correlates of neocortical ripple and high-gamma oscillations during spindles of natural sleep. Neuron 92(4), 916–928 (2016). https://doi.org/10.1016/j.neuron.2016.09.032

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by IM, OB, ET, and LK. The first draft of the manuscript was written by IM, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to I. Madaeva.

Ethics declarations

Conflict of interest

No financial or nonfinancial interests and funding.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madaeva, I., Berdina, O., Titova, E. et al. Pattern of “sleep spindles” in obstructive sleep apnea patients. Eur. Phys. J. Spec. Top. (2023). https://doi.org/10.1140/epjs/s11734-023-01049-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-01049-3

Navigation