Skip to main content
Log in

Steered molecular dynamics simulation of force triggering the integrin αIIbβ3 extension via its ligand

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Integrin αIIbβ3 expresses on the plasma membrane of platelets, which can be activated by mechanical pulling force from its ligand. Herein, we performed all-atom molecular dynamics (MD) simulations on the full-length integrin embedded in the membrane with a ligand, fibronectin (FN), attaching to the integrin head. A pulling force was applied to the ligand in the MD simulations. The force applied on the ligand could transmit to the integrin head through the transient interaction, and have chances to induce the extension of the integrin. The loading rate affects the pulling force but has limited effects on the integrin extension. Our simulation showed the mechanical force could induce the conformational change of the membrane-embedded integrin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are not publicly available due to the extremely large data volume but are available from the corresponding author upon reasonable request.

References

  1. M. Humphries, Integrin structure. Biochem. Soc. Trans. 28, 311–340 (2000)

    Google Scholar 

  2. M. Shimaoka, J. Takagi, T.A. Springer, Conformational regulation of integrin structure and function. Annu. Rev. Biophys. Biomol. Struct. 31, 485–516 (2002)

    Google Scholar 

  3. J.E. Meredith, M.A. Schwartz, Integrins, adhesion and apoptosis. Trends Cell Biol. 7, 146–150 (1997)

    Google Scholar 

  4. J.-P. Xiong, T. Stehle, B. Diefenbach, R. Zhang, R. Dunker, D.L. Scott, A. Joachimiak, S.L. Goodman, M.A. Arnaout, Crystal structure of the extracellular segment of integrin αVβ3. Science 294, 339–345 (2001)

    ADS  Google Scholar 

  5. I.D. Campbell, M.J. Humphries, Integrin structure, activation, and interactions. Cold Spring Harb. Perspect. Biol. 3, a004994 (2011)

    Google Scholar 

  6. J. Li, Y. Su, W. Xia, Y. Qin, M.J. Humphries, D. Vestweber, C. Cabañas, C. Lu, T.A. Springer, Conformational equilibria and intrinsic affinities define integrin activation. EMBO J. 36, 629–645 (2017)

    Google Scholar 

  7. T. Schürpf, T.A. Springer, Regulation of integrin affinity on cell surfaces. EMBO J. 30, 4712–4727 (2011)

    Google Scholar 

  8. J. Takagi, B.M. Petre, T. Walz, T.A. Springer, Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 110, 599–611 (2002)

    Google Scholar 

  9. T. Xiao, J. Takagi, B.S. Coller, J.-H. Wang, T.A. Springer, Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature 432, 59–67 (2004)

    ADS  Google Scholar 

  10. Z. Sun, S.S. Guo, R. Fässler, Integrin-mediated mechanotransduction. J. Cell Biol. 215, 445–456 (2016)

    Google Scholar 

  11. S.J. Holland, N.W. Gale, G. Mbamalu, G.D. Yancopoulos, M. Henkemeyer, T. Pawson, Bidirectional signalling through the EPH-family receptor Nuk and its transmembrane ligands. Nature 383, 722–725 (1996)

    ADS  Google Scholar 

  12. R.O. Hynes, Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002)

    Google Scholar 

  13. R. Alon, M.L. Dustin, Force as a facilitator of integrin conformational changes during leukocyte arrest on blood vessels and antigen-presenting cells. Immunity 26, 17–27 (2007)

    Google Scholar 

  14. E. Puklin-Faucher, M.P. Sheetz, The mechanical integrin cycle. J. Cell Sci. 122, 179–186 (2009)

    Google Scholar 

  15. W. Chen, J. Lou, E.A. Evans, C. Zhu, Observing force-regulated conformational changes and ligand dissociation from a single integrin on cells. J. Cell Biol. 199, 497–512 (2012)

    Google Scholar 

  16. R. Kolasangiani, T.C. Bidone, M.A. Schwartz, Integrin conformational dynamics and mechanotransduction. Cells 11, 3584 (2022)

    Google Scholar 

  17. F. Kong, A.J. García, A.P. Mould, M.J. Humphries, C. Zhu, Demonstration of catch bonds between an integrin and its ligand. J. Cell Biol. 185, 1275–1284 (2009)

    Google Scholar 

  18. Y. Chen, H. Lee, H. Tong, M. Schwartz, C. Zhu, Force regulated conformational change of integrin αVβ3. Matrix Biol. 60, 70–85 (2017)

    Google Scholar 

  19. A. Elosegui-Artola, R. Oria, Y. Chen, A. Kosmalska, C. Pérez-González, N. Castro, C. Zhu, X. Trepat, P. Roca-Cusachs, Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat. Cell Biol. 18, 540–548 (2016)

    Google Scholar 

  20. W. Chen, J. Lou, C. Zhu, Forcing switch from short-to intermediate-and long-lived states of the αA domain generates LFA-1/ICAM-1 catch bonds. J. Biol. Chem. 285, 35967–35978 (2010)

    Google Scholar 

  21. Y.I. Choi, J.S. Duke-Cohan, W. Chen, B. Liu, J. Rossy, T. Tabarin, L. Ju, J. Gui, K. Gaus, C. Zhu, Dynamic control of β1 integrin adhesion by the plexinD1-sema3E axis. Proc. Natl. Acad. Sci. 111, 379–384 (2014)

    ADS  Google Scholar 

  22. F. Rosetti, Y. Chen, M. Sen, E. Thayer, V. Azcutia, J.M. Herter, F.W. Luscinskas, X. Cullere, C. Zhu, T.N. Mayadas, A lupus-associated Mac-1 variant has defects in integrin allostery and interaction with ligands under force. Cell Rep. 10, 1655–1664 (2015)

    Google Scholar 

  23. D. Li, B. Ji, Predicted rupture force of a single molecular bond becomes rate independent at ultralow loading rates. Phys. Rev. Lett. 112, 078302 (2014)

    ADS  Google Scholar 

  24. N. Plattner, S. Doerr, G. De Fabritiis, F. Noé, Complete protein–protein association kinetics in atomic detail revealed by molecular dynamics simulations and Markov modelling. Nat. Chem. 9, 1005–1011 (2017)

    Google Scholar 

  25. C. Rakers, M. Bermudez, B.G. Keller, J. Mortier, G. Wolber, Computational close up on protein–protein interactions: how to unravel the invisible using molecular dynamics simulations? Wiley Interdiscip. Rev. Comput. Mol. Sci. 5, 345–359 (2015)

    Google Scholar 

  26. X. Li, Z. Fang, D. Li, Z. Li, Binding kinetics study of SARS-CoV-2 main protease and potential inhibitors via molecular dynamics simulations. Phys. Chem. Chem. Phys. 25, 15135–15145 (2023)

    Google Scholar 

  27. D. Li, B. Ji, K.-C. Hwang, Y. Huang, Strength of hydrogen bond network takes crucial roles in the dissociation process of inhibitors from the HIV-1 protease binding pocket. PLoS ONE 6, e19268 (2011)

    ADS  Google Scholar 

  28. D.E. Shaw, P. Maragakis, K. Lindorff-Larsen, S. Piana, R.O. Dror, M.P. Eastwood, J.A. Bank, J.M. Jumper, J.K. Salmon, Y. Shan, Atomic-level characterization of the structural dynamics of proteins. Science 330, 341–346 (2010)

    ADS  Google Scholar 

  29. S. Piana, K. Lindorff-Larsen, D.E. Shaw, Protein folding kinetics and thermodynamics from atomistic simulation. Proc. Natl. Acad. Sci. 109, 17845–17850 (2012)

    ADS  Google Scholar 

  30. J.D. Durrant, J.A. McCammon, Molecular dynamics simulations and drug discovery. BMC Biol. 9, 1–9 (2011)

    Google Scholar 

  31. P.-C. Do, E.H. Lee, L. Le, Steered molecular dynamics simulation in rational drug design. J. Chem. Inf. Model. 58, 1473–1482 (2018)

    Google Scholar 

  32. D. Li, M.S. Liu, B. Ji, Mapping the dynamics landscape of conformational transitions in enzyme: the adenylate kinase case. Biophys. J. 109, 647–660 (2015)

    ADS  Google Scholar 

  33. D. Li, B. Ji, K. Hwang, Y. Huang, Crucial roles of the subnanosecond local dynamics of the flap tips in the global conformational changes of HIV-1 protease. J. Phys. Chem. B 114, 3060–3069 (2010)

    Google Scholar 

  34. W. Chen, J. Lou, J. Hsin, K. Schulten, S.C. Harvey, C. Zhu, Molecular dynamics simulations of forced unbending of integrin αVβ3. PLoS Comput. Biol. 7, e1001086 (2011)

    ADS  Google Scholar 

  35. M. Nagae, S. Re, E. Mihara, T. Nogi, Y. Sugita, J. Takagi, Crystal structure of α5β1 integrin ectodomain: atomic details of the fibronectin receptor. J. Cell Biol. 197, 131–140 (2012)

    Google Scholar 

  36. E. Puklin-Faucher, V. Vogel, Integrin activation dynamics between the RGD-binding site and the headpiece hinge. J. Biol. Chem. 284, 36557–36568 (2009)

    Google Scholar 

  37. L. Levin, E. Zelzion, E. Nachliel, M. Gutman, Y. Tsfadia, Y. Einav, A single disulfide bond disruption in the β3 integrin subunit promotes thiol/disulfide exchange, a molecular dynamics study. PLoS ONE 8, e59175 (2013)

    ADS  Google Scholar 

  38. S. Su, Y. Ling, Y. Fang, J. Wu, Force-enhanced biophysical connectivity of platelet β3 integrin signaling through Talin is predicted by steered molecular dynamics simulations. Sci. Rep. 12, 4605 (2022)

    ADS  Google Scholar 

  39. T.C. Bidone, A. Polley, J. Jin, T. Driscoll, D.V. Iwamoto, D.A. Calderwood, M.A. Schwartz, G.A. Voth, Coarse-grained simulation of full-length integrin activation. Biophys. J. 116, 1000–1010 (2019)

    ADS  Google Scholar 

  40. J. Yang, Y.-Q. Ma, R.C. Page, S. Misra, E.F. Plow, J. Qin, Structure of an integrin αIIbβ3 transmembrane-cytoplasmic heterocomplex provides insight into integrin activation. Proc. Natl. Acad. Sci. 106, 17729–17734 (2009)

    ADS  Google Scholar 

  41. S. Jo, T. Kim, W. Im, Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLoS ONE 2, e880 (2007)

    ADS  Google Scholar 

  42. E.L. Wu, X. Cheng, S. Jo, H. Rui, K.C. Song, E.M. Dávila-Contreras, Y. Qi, J. Lee, V. Monje-Galvan, R.M. Venable, CHARMM-GUI Membrane Builder Toward Realistic Biological Membrane Simulations (Wiley, New York, 2014)

    Google Scholar 

  43. J. Zhu, B.-H. Luo, T. Xiao, C. Zhang, N. Nishida, T.A. Springer, Structure of a complete integrin ectodomain in a physiologic resting state and activation and deactivation by applied forces. Mol. Cell 32, 849–861 (2008)

    Google Scholar 

  44. J.F. Van Agthoven, J.-P. Xiong, J.L. Alonso, X. Rui, B.D. Adair, S.L. Goodman, M.A. Arnaout, Structural basis for pure antagonism of integrin αVβ3 by a high-affinity form of fibronectin. Nat. Struct. Mol. Biol. 21, 383–388 (2014)

    Google Scholar 

  45. P. Mark, L. Nilsson, Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A 105, 9954–9960 (2001)

    Google Scholar 

  46. M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith, B. Hess, E. Lindahl, GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–25 (2015)

    ADS  Google Scholar 

  47. J. Huang, A.D. MacKerell Jr., CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J. Comput. Chem. 34, 2135–2145 (2013)

    Google Scholar 

  48. G. Bussi, D. Donadio, M. Parrinello, Canonical sampling through velocity rescaling. J. Chem. Phys. 126 (2007)

  49. H.J. Berendsen, J.V. Postma, W.F. Van Gunsteren, A. DiNola, J.R. Haak, Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984)

    ADS  Google Scholar 

  50. Z. Li, A molecular arm: the molecular bending-unbending mechanism of integrin. bioRxiv (2023). https://doi.org/10.1101/2023.04.10.536312

    Article  Google Scholar 

  51. E. Puklin-Faucher, M. Gao, K. Schulten, V. Vogel, How the headpiece hinge angle is opened: new insights into the dynamics of integrin activation. J. Cell Biol. 175, 349–360 (2006)

    Google Scholar 

Download references

Acknowledgements

This work is supported by grants from the National Natural Science Foundation of China (12272216 and 12172204) and the Natural Science Foundation of Shanghai (22ZR1423500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhai Li.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 835 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Li, Z. Steered molecular dynamics simulation of force triggering the integrin αIIbβ3 extension via its ligand. Eur. Phys. J. Spec. Top. 232, 2773–2781 (2023). https://doi.org/10.1140/epjs/s11734-023-00965-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00965-8

Navigation