Skip to main content
Log in

Application of efficient hybrid local meshless method for the numerical simulation of time-fractional PDEs arising in mathematical physics and finance

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

This article has been updated

Abstract

The article describes the implementation of an efficient hybrid local meshless technique for the numerical solution of a multi-term time-fractional mobile-immobile diffusion equation in the sense of Caputo derivative, which models an anomalous mobile-immobile solute transport process. The proposed meshless technique, based on the inverse multiquadric-cubic radial basis function, is used to discretize the space derivatives of the model, while for time derivatives, an implicit time integration is utilized. The recommended technique approximates the solution on a set of scattered/uniform nodes, leading to a sparse and well-conditioned coefficient matrix. The article focuses on the benefits of meshless techniques, emphasizing their meshless nature and ease of use in higher dimensions. The proposed technique’s numerical results are compared with analytical solutions for various test problems on both rectangular and non-rectangular computational domains. These comparisons demonstrate the successful applications and accuracy of the local meshless technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 09 August 2023

    Additional information was added to reference 24.

References

  1. K. Diethelm, The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type. Springer, New York (2010)

  2. G. Jumarie, Table of some basic fractional calculus formulae derived from a modified Riemann–Liouville derivative for non-differentiable functions. Appl. Math. Lett. 22(3), 378–385 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. T.-Q. Tang, Z. Shah, E. Bonyah, R. Jan, M. Shutaywi, N. Alreshidi, Modeling and analysis of breast cancer with adverse reactions of chemotherapy treatment through fractional derivative. Comput. Math. Methods Med. 2022 (2022)

  4. E. Scalas, R. Gorenflo, F. Mainardi, Fractional calculus and continuous-time finance. Phys. A 284(1–4), 376–384 (2000)

    Article  MathSciNet  Google Scholar 

  5. M. Dentz, B. Berkowitz, Transport behavior of a passive solute in continuous time random walks and multirate mass transfer. Water Resour. Res. 39 (5) (2003)

  6. K. Coats, B. Smith, Dead-end pore volume and dispersion in porous media. Soc. Petrol. Eng. J. 4(01), 73–84 (1964)

    Article  Google Scholar 

  7. G. Gao, H. Zhan, S. Feng, B. Fu, Y. Ma, G. Huang, A new mobile-immobile model for reactive solute transport with scale-dependent dispersion. Water Resour. Res. 46 (8) (2010)

  8. M. Jawad, Z. Khan, E. Bonyah, R. Jan, Analysis of hybrid nanofluid stagnation point flow over a stretching surface with melting heat transfer, Mathematical Problems in Engineering 2022 (2022)

  9. Q. Liu, F. Liu, I. Turner, V. Anh, Y.T. Gu, A RBF meshless approach for modeling a fractal mobile/immobile transport model. Appl. Math. Comput. 226, 336–347 (2014)

    MathSciNet  MATH  Google Scholar 

  10. M. Caputo, Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. Int. 13(5), 529–539 (1967)

    Article  ADS  Google Scholar 

  11. R. Schumer, D.A. Benson, M.M. Meerschaert, B. Baeumer, Fractal mobile/immobile solute transport. Water Resour. Res. 39(10), 1296 (2003)

    Article  ADS  Google Scholar 

  12. J.K.K. Asamoah, E. Yankson, E. Okyere, G.-Q. Sun, Z. Jin, R. Jan et al., Optimal control and cost-effectiveness analysis for dengue fever model with asymptomatic and partial immune individuals. Results in Physics 31, 104919 (2021)

    Article  Google Scholar 

  13. S. Mehnaz, M. N. Khan, I. Ahmad, S. Abdel-Khalek, A. M. Alghamdi, M. Inc, The generalized time fractional Gardner equation via numerical meshless collocation method, Thermal Science 26 (Spec. issue 1) (2022) 469–474

  14. A. Jan, R. Jan, H. Khan, M. Zobaer, R. Shah, Fractional-order dynamics of Rift Valley fever in ruminant host with vaccination, Commun. Math. Biol. Neurosci. 2020 (2020) Article–ID

  15. F. Wang, M.N. Khan, I. Ahmad, H. Ahmad, H. Abu-Zinadah, Y.-M. Chu, Numerical solution of traveling waves in chemical kinetics: time-fractional fishers equations. Fractals 30(02), 2240051 (2022)

    Article  ADS  MATH  Google Scholar 

  16. M. Inc, M. N. Khan, I. Ahmad, S.-W. Yao, H. Ahmad, P. Thounthong, Analysing time-fractional exotic options via efficient local meshless method, Results in Physics (2020) 103385

  17. R. Jan, A. Jan, Msgdtm for solution of fractional order dengue disease model. International Journal of Science and Research 6(3), 1140–1144 (2017)

    Google Scholar 

  18. H. Ahmad, T.A. Khan, I. Ahmad, P.S. Stanimirović, Y.-M. Chu, A new analyzing technique for nonlinear time fractional Cauchy reaction-diffusion model equations. Results in Physics 19, 103462 (2020)

    Article  Google Scholar 

  19. P.K. Mishra, S.K. Nath, G. Kosec, M.K. Sen, An improved radial basis-pseudospectral method with hybrid Gaussian-cubic kernels. Eng. Anal. Boundary Elem. 80, 162–171 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. I. Ahmad, Siraj-ul-Islam, Mehnaz, S. Zaman, Local meshless differential quadrature collocation method for time-fractional PDEs, Discrete & Continuous Dynamical Systems-S (2018) 0

  21. Q. Shen, Local RBF-based differential quadrature collocation method for the boundary layer problems. Eng. Anal. Boundary Elem. 34, 213–228 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Thounthong, M.N. Khan, I. Hussain, I. Ahmad, P. Kumam, Symmetric radial basis function method for simulation of elliptic partial differential equations. Mathematics 6(12), 327 (2018)

    Article  MATH  Google Scholar 

  23. I. Ahmad, M. Riaz, M. Ayaz, M. Arif, S. Islam, P. Kumam, Numerical simulation of partial differential equations via local meshless method, symmetry 11 (2019) 257

  24. M. Nawaz, I. Ahmad, H. Ahmad, A radial basis function collocation method for space-dependent inverse heat problems. J. Appl. Comput. Mech. 6, 1187–1199 (2020). https://doi.org/10.22055/jacm.2020.32999.2123

    Article  Google Scholar 

  25. I. Ahmad, A.Q.M. Siraj-ul-Islam, Khaliq, Local RBF method for multi-dimensional partial differential equations. Computers & Mathematics with Applications 74, 292–324 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. C. Shu, Differential quadrature and its application in engineering (Springer-Verlag, London, 2000)

    Book  MATH  Google Scholar 

  27. G. Jumarie, Stock exchange fractional dynamics defined as fractional exponential growth driven by (usual) Gaussian white noise. application to fractional Black-Scholes equations, Insurance: Mathematics and Economics 42(1), 271–287 (2008)

    MATH  Google Scholar 

  28. G. Jumarie, Derivation and solutions of some fractional Black-Scholes equations in coarse-grained space and time. application to merton’s optimal portfolio. Computers & Mathematics with Applications 59(3), 1142–1164 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Atangana, D. Baleanu, New fractional derivatives with non-local and nonsingular kernel theory and application to heat transfer model. Therm. Sci. 20, 763 (2016)

    Article  Google Scholar 

  30. J.H. He, Z.B. Li, Converting fractional differential equations into partial differential equations. Therm. Sci. 16(2), 331–334 (2012)

    Article  Google Scholar 

  31. C. A. Micchelli, Interpolation of scattered data: distance matrices and conditionally positive definite functions, in: Approximation theory and spline functions, Springer, 1984, pp. 143–145

  32. S.A. Sarra, A local radial basis function method for advection-diffusion-reaction equations on complexly shaped domains. Appl. Math. Comput. 218(19), 9853–9865 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was funded by the University of Jeddah, Jeddah, Saudi Arabia. under Grant No.(UJ-21-DR-30). The authors, therefore, acknowledge with thanks the University of Jeddah technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hijaz Ahmad.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Ethical approval

All the authors demonstrating that they have adhered to the accepted ethical standards of a genuine research study.

Consent to participate

Being the corresponding author, I have consent to participate of all the authors in this research work.

Consent to publish

All the authors are agreed to publish this research work.

Availability of data and materials

Data will be provided on request.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu-Zinadah, H., Alsulami, M.D. & Ahmad, H. Application of efficient hybrid local meshless method for the numerical simulation of time-fractional PDEs arising in mathematical physics and finance. Eur. Phys. J. Spec. Top. 232, 2595–2605 (2023). https://doi.org/10.1140/epjs/s11734-023-00946-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00946-x

Navigation