Skip to main content
Log in

Quasi-classical trajectory study of F + HCl reactive scattering at hyperthermal collision energies

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We present quasi-classical trajectory calculations of the F + HCl reactive scattering, for total angular momentum equal zero and using a London–Eyring–Polanyi–Sato potential energy surface specifically developed for the title reaction. The reactive dynamics is investigated for a wide range of collision energies, from subthermal velocities up to kinetic energies significantly exceeding the dissociation energy of the reactant molecule. We focus here on the light- and heavy-atom exchange probability and mechanisms at hyperthermal collision velocities, whereas low-energy collisions (which dominate the evaluation of the reaction rate constant) are used for the purpose of validating the current implementation of the quasi-classical trajectory method in a symmetrical hyperspherical configuration space. In spite of the limitations of the potential energy surface, the present methodology yields reaction probabilities in agreement with previous experimental and theoretical results. The computed branching probabilities among the different reaction channels exhibit a mild dependence on the initial vibrational state of the diatomic molecule. Conversely, they show a marked sensitivity to the value of the impact angle, which becomes more pronounced for increasing collision energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability statement

All data generated or analyzed during this study are included in this published article.

References

  1. X. Yang, D.C. Clary, D.M. Neumark, Chem. Soc. Rev. 46, 7481 (2017)

    Google Scholar 

  2. A. Lagana, G. Lendvay (eds.), Theory of Chemical Reaction Dynamics (Kluwer Academic Publishers, Dordrecht, 2005)

    Google Scholar 

  3. W. Hu, G.C. Schatz, J. Chem. Phys. 125, 132301 (2006)

    ADS  Google Scholar 

  4. J. Li, B. Zhao, D. Xie, H. Guo, J. Phys. Chem. Lett. 11, 8844 (2020)

    Google Scholar 

  5. M. Maiuri, M. Garavelli, G. Cerullo, J. Am. Chem. Soc. 142, 3 (2020)

    Google Scholar 

  6. A. Yu, J. Saudi Chem. Soc. 23, 1 (2019)

    Google Scholar 

  7. T. Nagy, A. Vikár, G. Lendvay, J. Chem. Phys. 144, 14104 (2016)

    ADS  Google Scholar 

  8. T. Nagy, A. Vikár, G. Lendvay, Phys. Chem. Chem. Phys. 20, 13224 (2018)

    Google Scholar 

  9. A. Rodríguez-Fernández, L. Bonnet, C. Crespos, P. Larrégaray, R. Díez Muiño, J. Phys. Chem. Lett. 10, 7629 (2019)

  10. A. Martinez-Mesa, P. Saalfrank, J. Chem. Phys. 142, 194107 (2015)

    ADS  Google Scholar 

  11. B. Rodríguez-Hernández, D. Ondarse-Álvarez, N. Oldani, A. Martinez-Mesa, L. Uranga-Piña, S. Tretiak, S. Fernández-Alberti, J. Phys. Chem. C 122, 16639 (2018)

    Google Scholar 

  12. N. Johnathan, C. Melliars, S. Okuda, D.H. Slater, D. Timlin, Mol. Phys. 22, 561 (1971)

    ADS  Google Scholar 

  13. K. Tamagake, D.W. Setser, J.P. Sung, J. Chem. Phys. 73, 2203 (1980)

    ADS  Google Scholar 

  14. E. Wüzberg, P.L. Houston, J. Chem. Phys. 72, 5915 (1980)

    ADS  Google Scholar 

  15. C.M. Moore, I.W.M. Smith, D.W.A. Stewart, Int. J. Chem. Kinet. 26, 813 (1994)

    Google Scholar 

  16. A.M. Zolot, D.J. Nesbitt, J. Chem. Phys. 127, 114319 (2007)

    ADS  Google Scholar 

  17. I. Last, M. Baer, J. Chem. Phys. 80, 3246 (1984)

    ADS  Google Scholar 

  18. H. Tachikawa, J. Phys. Chem. 99, 225 (1995)

    Google Scholar 

  19. R. Sayós, J. Hernando, J. Hijazo, M. González, Phys. Chem. Chem. Phys. 1, 947 (1999)

    Google Scholar 

  20. R. Sayós, J. Hernando, R. Francia, M. González, Phys. Chem. Chem. Phys. 2, 523 (2000)

    Google Scholar 

  21. B.-Y. Tang, B.-H. Yang, K.-L. Han, R.-Q. Zhang, J.Z.H. Zhang, J. Chem. Phys. 113, 10105 (2000)

    ADS  Google Scholar 

  22. H. Kornweitz, A. Persky, J. Phys. Chem. A 108, 140 (2004)

    Google Scholar 

  23. M.Y. Hayes, M.P. Deskevich, D.J. Nesbitt, K. Takahachi, R.T. Skodje, J. Chem. Phys. A 110, 436 (2006)

    Google Scholar 

  24. M.P. Deskevich, M.Y. Hayes, K. Takahashi, R.T. Skodje, D.J. Nesbitt, J. Chem. Phys. 124, 224303 (2006)

    ADS  Google Scholar 

  25. G. Quéméner, N. Balakrishnan, J. Chem. Phys. 128, 224304 (2008)

    ADS  Google Scholar 

  26. P. Defazio, C. Petrongolo, J. Phys. Chem. A 113, 4208 (2009)

    Google Scholar 

  27. S. Yin, M. Guo, L. Li, Y. Zhang, X. Li, Int. J. Quantum Chem. 111, 4400 (2011)

    Google Scholar 

  28. X.-F. Yue, X. Miao, J. Chem. Sci. 123, 21 (2011)

    Google Scholar 

  29. N. Bulut, J. Kłos, M.H. Alexander, J. Chem. Phys. 136, 104304 (2012)

    ADS  Google Scholar 

  30. A. Li, H. Guo, Z. Sun, J. Kłos, M.H. Alexander, Phys. Chem. Chem. Phys. 15, 15347 (2013)

    Google Scholar 

  31. Z.-X. Duan, M.-H. Qiu, C.-X. Yao, Comput. Theo. Chem. 1024, 69 (2013)

    Google Scholar 

  32. Z.-G. Suna, S.Y. Leeb, D.-H. Zhang, Chin. J. Chem. Phys. 20, 365 (2007)

    Google Scholar 

  33. M. Bai, D. Lu, Y. Li, J. Li, Phys. Chem. Chem. Phys. 18, 32031 (2016)

    Google Scholar 

  34. Y.A. Aoto, A. Kohn, Phys. Chem. Chem. Phys. 18, 30241 (2016)

    Google Scholar 

  35. D. Lu, Y. Zhang, J. Li, Chem. Phys. Lett. 694, 93 (2018)

    ADS  Google Scholar 

  36. Z. Varga, D.G. Truhlar, Phys. Chem. Chem. Phys. 23, 26273 (2021)

    Google Scholar 

  37. J. Zhang, J.P. Camden, A.L. Brunsvold, H.P. Upadhyaya, T.K. Minton, G.C. Schatz, J. Am. Chem. Soc. 130, 8896 (2008)

    Google Scholar 

  38. T. Ozawa, D.A. Levin, Phys. Fluids 19, 056102 (2007)

    ADS  Google Scholar 

  39. G. Lendvay, J. Phys. Chem. A 123, 10230 (2019)

    Google Scholar 

  40. M. Ge, H. Yuang, Y. Zheng, Chem. Cent. J. 7, 177 (2013)

    Google Scholar 

  41. X. Yang, T.K. Minton, D.H. Zhang, Science 336, 1650 (2012)

    ADS  Google Scholar 

  42. V.M. Freixas-Lemus, A. Martínez-Mesa, L. Uranga-Piña, J. Phys. Chem. A 120, 2059 (2016)

    Google Scholar 

  43. M.B. Sevryuk, A. Lombardi, V. Aquilanti, Phys. Rev. A 72, 033201 (2005)

    ADS  MathSciNet  Google Scholar 

  44. A. Lombardi, V. Aquilanti, E. Yurtsever, M.B. Sevryuk, Chem. Phys. Lett. 430, 424 (2006)

    ADS  Google Scholar 

  45. J.C. Castro-Palacio, L. Velazquez-Abad, A. Lombardi, V. Aquilanti, J. Rubayo-Soneira, J. Chem. Phys. 126, 174701 (2007)

    ADS  Google Scholar 

  46. J.C. Castro-Palacio, J. Rubayo-Soneira, A. Lombardi, V. Aquilanti, Int. J. Quantum Chem. 108, 1821 (2008)

    ADS  Google Scholar 

  47. A. Lombardi, F. Palazzetti, G. Grossi, V. Aquilanti, J.C. Castro-Palacio, J. Rubayo-Soneira, Phys. Scr. 80, 048103 (2009)

    ADS  Google Scholar 

  48. Q. Sun, J.M. Bowman, G.C. Schatz, J.R. Sharp, J.N.L. Connor, J. Chem. Phys. 92, 1677 (1990)

    ADS  Google Scholar 

  49. J.M. Bowman, J. Chem. Phys. 95, 4960 (1991)

    Google Scholar 

  50. D.H. Zhang, J.Z.H. Zhang, J. Chem. Phys. 110, 7622 (1999)

    ADS  Google Scholar 

  51. B.R. Johnson, J. Chem. Phys. 79, 1906 (1983)

    ADS  MathSciNet  Google Scholar 

  52. A.M.G. Ding, L.J. Kirsch, D.S. Perry, J.C. Polanyi, J.L. Schreiber, Faraday Discuss. Chem. Soc. 55, 252 (1973)

    Google Scholar 

Download references

Acknowledgements

The results incorporated in this publication have received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement n\(^o\)898663. This study has been (partially) supported through the EUR grant NanoX n\(^\circ\) ANR-17-EURE-0009 in the framework of the Programme des Investissements d’Avenir. The work was partially supported by the Montpellier Advanced Knowledge Institute on Transitions (MAK’IT) within its Visiting Scientist programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliezer Martínez-Mesa.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freixas-Lemus, V.M., Martínez-Mesa, A. & Uranga-Piña, L. Quasi-classical trajectory study of F + HCl reactive scattering at hyperthermal collision energies. Eur. Phys. J. Spec. Top. 232, 1945–1960 (2023). https://doi.org/10.1140/epjs/s11734-023-00945-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00945-y

Navigation