Skip to main content
Log in

A chaotic Hartley oscillator with fractional-order JFET and its network behaviors

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Non-integer (fractional)-order systems are more realistic than integer-order systems, which mimic the real-time dynamics of various physical and biological systems. As a result, in this paper, we investigate the dynamical behavior of the Hartley oscillator with fractional-order JFETs (HFJ). To begin understanding the dynamical behavior of the HFJ, we perform stability of the equilibrium point analysis, and bifurcation analysis by finding local maxima of the state variables, and Lyapunov exponents. We discover that as a function of fractional order and voltage, considered HFJ exhibits the transition from periodic to chaotic dynamics via the period-doubling route. The multistability characteristics are investigated further using forward and backward bifurcation continuations, and we exemplify the presence of distinct attractors. Finally, we demonstrate the network behavior of an HFJ system, specifically, the transition to a coherent state as increasing the magnitude of fractional order or coupling strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data generated during the current study will be made available at reasonable request.

References

  1. C.A. Monje, Y. Chen, B.M. Vinagre, D. Xue, V. Feliu-Batlle, Fractional-Order Systems and Controls: Fundamentals and Applications (Springer Science & Business Media, Berlin, 2010)

    MATH  Google Scholar 

  2. M.A. Jun, Chaos theory and applications: the physical evidence, mechanism are important in chaotic systems. Chaos Theory Appl. 4(1), 1–3 (2022)

    Google Scholar 

  3. M.M. Asheghan, S.S. Delshad, M.T.H. Beheshti, M.S. Tavazoei, Non-fragile control and synchronization of a new fractional order chaotic system. Appl. Math. Comput. 222, 712–721 (2013)

    MathSciNet  MATH  Google Scholar 

  4. T.T. Hartley, C.F. Lorenzo, H.K. Qammer, Chaos in a fractional order Chua’s system. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 42(8), 485–490 (1995)

    Google Scholar 

  5. J.A. Machado, Fractional-Order Derivative Approximations in Discrete-Time Control Systems (SAMS, Bhubaneswar, 1998), pp.1–16

    Google Scholar 

  6. J.M. Muñoz-Pacheco, Infinitely many hidden attractors in a new fractional-order chaotic system based on a fracmemristor. Eur. Phys. Journal . Spec. Top. 228(10), 2185–2196 (2019)

    ADS  Google Scholar 

  7. R.G. Li, H.N. Wu, Secure communication on fractional-order chaotic systems via adaptive sliding mode control with teaching-learning-feedback-based optimization. Nonlinear Dyn. 95(2), 1221–1243 (2019)

    MATH  Google Scholar 

  8. M. Amabili, P. Balasubramanian, I. Breslavsky, Anisotropic fractional viscoelastic constitutive models for human descending thoracic aortas. J. Mech. Behav. Biomed. Mater. 99, 186–197 (2019)

    Google Scholar 

  9. M.S. Tavazoei, Fractional order chaotic systems: history, achievements, applications, and future challenges. Eur. Phys. J. Spec. Top. 229(6), 887–904 (2020)

    Google Scholar 

  10. Z. Njitacke Tabekoueng, S. Shankar Muni, T. Fonzin Fozin, G. Dolvis Leutcho, J. Awrejcewicz, Coexistence of infinitely many patterns and their control in heterogeneous coupled neurons through a multistable memristive synapse. Chaos Interdiscip. J. Nonlinear Sci. 32(5), 053114 (2022)

    MathSciNet  Google Scholar 

  11. S.S. Muni, H.O. Fatoyinbo, I. Ghosh, Dynamical effects of electromagnetic flux on Chialvo neuron map: nodal and network behaviors. Int. J. Bifurc. Chaos 32(09), 2230020 (2022)

    MathSciNet  MATH  Google Scholar 

  12. D. Cafagna, G. Grassi, On the simplest fractional-order memristor-based chaotic system. Nonlinear Dyn. 70(2), 1185–1197 (2012)

    MathSciNet  Google Scholar 

  13. S.H. Weinberg, Membrane capacitive memory alters spiking in neurons described by the fractional-order Hodgkin-Huxley model. PLoS One 10(5), e0126629 (2015)

    Google Scholar 

  14. H.T. Yau, C.C. Wang, C.T. Hsieh, S.Y. Wu, Fractional order Sprott chaos synchronisation-based real-time extension power quality detection method. IET Gener. Transm. Distrib. 9(16), 2775–2781 (2015)

    Google Scholar 

  15. M.H. Wang, H.T. Yau, New power quality analysis method based on chaos synchronization and extension neural network. Energies 7(10), 6340–6357 (2014)

    Google Scholar 

  16. C.K. Chen, Y.C. Li, Machine chattering identification based on the fractional-order chaotic synchronization dynamic error. Int. J. Adv. Manuf. Technol. 100(1), 907–915 (2019)

    Google Scholar 

  17. K. Sathiyadevi, V.K. Chandrasekar, D.V. Senthilkumar, Inhomogeneous to homogeneous dynamical states through symmetry breaking dynamics. Nonlinear Dyn. 98(1), 327–340 (2019)

    MATH  Google Scholar 

  18. K. Sathiyadevi, V.K. Chandrasekar, M. Lakshmanan, Emerging chimera states under nonidentical counter-rotating oscillators. Phys. Rev. E 105(3), 034211 (2022)

    ADS  MathSciNet  Google Scholar 

  19. K. Ponrasu, U. Singh, K. Sathiyadevi, D.V. Senthilkumar, V.K. Chandrasekar, Symmetry breaking dynamics induced by mean-field density and low-pass filter. Chaos Interdiscip. J. Nonlinear Sci. 30(5), 053120 (2020)

    MathSciNet  Google Scholar 

  20. D. Premraj, K. Suresh, T. Banerjee, K. Thamilmaran, Bifurcation delay in a network of locally coupled slow-fast systems. Phys. Rev. E 98(2), 022206 (2018)

    ADS  MathSciNet  Google Scholar 

  21. D. Premraj, K. Suresh, K. Thamilmaran, Effect of processing delay on bifurcation delay in a network of slow-fast oscillators. Chaos Interdiscip. J. Nonlinear Sci. 29(12), 123127 (2019)

    MathSciNet  MATH  Google Scholar 

  22. A.T. Azar, S. Vaidyanathan, A. Ouannas (eds.), Fractional Order Control and Synchronization of Chaotic Systems, vol. 688 (Springer, Berlin, 2017)

    MATH  Google Scholar 

  23. S.K. Damarla, M. Kundu, Fractional Order Processes: Simulation, Identification, and Control (CRC Press, Boca Raton, 2018)

    MATH  Google Scholar 

  24. M.M. Al-sawalha, Synchronization of different order fractional-order chaotic systems using modify adaptive sliding mode control. Adv. Differ. Equ. 2020(1), 1–17 (2020)

    MathSciNet  MATH  Google Scholar 

  25. Y. Xu, H. Wang, Synchronization of fractional-order chaotic systems with Gaussian fluctuation by sliding mode control, in Abstract and Applied Analysis, vol. 2013 (Hindawi, London, 2013)

  26. S.K. Agrawal, M. Srivastava, S. Das, Synchronization of fractional order chaotic systems using active control method. Chaos Solitons Fract. 45(6), 737–752 (2012)

    ADS  Google Scholar 

  27. P. Selvaraj, O.M. Kwon, S.H. Lee, R. Sakthivel, Cluster synchronization of fractional-order complex networks via uncertainty and disturbance estimator-based modified repetitive control. J. Frankl. Inst. 358(18), 9951–9974 (2021)

    MathSciNet  MATH  Google Scholar 

  28. J. Zhou, Y. Zhao, Z. Wu, Cluster synchronization of fractional-order directed networks via intermittent pinning control. Phys. A Stat. Mech. Appl. 519, 22–33 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Y. Wang, Z. Wu, Cluster synchronization in fractional-order network with nondelay and delay coupling. Int. J. Mod. Phys. C 33(01), 2250006 (2022)

    ADS  MathSciNet  Google Scholar 

  30. H. Fan, Y. Zhao, Cluster synchronization of fractional-order nonlinearly-coupling community networks with time-varying disturbances and multiple delays. IEEE Access 9, 60934–60945 (2021)

    Google Scholar 

  31. Z. Yaghoubi, Robust cluster consensus of general fractional-order nonlinear multi agent systems via adaptive sliding mode controller. Math. Comput. Simul. 172, 15–32 (2020)

    MathSciNet  MATH  Google Scholar 

  32. P. Liu, Z. Zeng, J. Wang, Asymptotic and finite-time cluster synchronization of coupled fractional-order neural networks with time delay. IEEE Trans. Neural Netw. Learn. Syst. 31(11), 4956–4967 (2020)

    MathSciNet  Google Scholar 

  33. S.N. Mbouna, T. Banerjee, R. Yamapi, P. Woafo, Diverse chimera and symmetry-breaking patterns induced by fractional derivation effect in a network of Stuart–Landau oscillators. Chaos Solitons Fract. 157, 111945 (2022)

    MathSciNet  MATH  Google Scholar 

  34. K. Rajagopal, A. Karthikeyan, S. Jafari, F. Parastesh, C. Volos, I. Hussain, Wave propagation and spiral wave formation in a Hindmarsh-Rose neuron model with fractional-order threshold memristor synaps. Int. J. Mod. Phys. B 34(17), 2050157 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  35. K. Rajagopal, S. Panahi, M. Chen, S. Jafari, B. Bao, Suppressing spiral wave turbulence in a simple fractional-order discrete neuron map using impulse triggering. Fractals 29(08), 2140030 (2021)

    ADS  MATH  Google Scholar 

  36. K. Rajagopal, S. Jafari, C. Li, A. Karthikeyan, P. Duraisamy, Suppressing spiral waves in a lattice array of coupled neurons using delayed asymmetric synapse coupling. Chaos Solitons Fract. 146, 110855 (2021)

    MathSciNet  Google Scholar 

  37. N. Korkmaz, İE. SAÇU, An efficient design procedure to implement the fractional-order chaotic jerk systems with the programmable analog platform. Chaos Theory Appl. 3(2), 59–66 (2021)

    Google Scholar 

  38. R. Tchitnga, P. Louodop, H. Fotsin, P. Woafo, A. Fomethe, Synchronization of simplest two-component Hartley’s chaotic circuits: influence of channel. Nonlinear Dyn. 74(4), 1065–1075 (2013)

    MathSciNet  Google Scholar 

  39. R. Tchitnga, H.B. Fotsin, B. Nana, P.H.L. Fotso, P. Woafo, Hartley’s oscillator: the simplest chaotic two-component circuit. Chaos Solitons Fract. 45(3), 306–313 (2012)

    ADS  Google Scholar 

  40. M. Varan, A. Akgül, E. Güleryüz, K. Serbest, Synchronisation and circuit realisation of chaotic Hartley system. Zeitschrift für Naturforschung A 73(6), 521–531 (2018)

    ADS  Google Scholar 

  41. R. Kengne, R. Tchitnga, A.K.S. Tewa, G. Litak, A. Fomethe, C. Li, Fractional-order two-component oscillator: stability and network synchronization using a reduced number of control signals. Eur. Phys. J. B 91(12), 1–19 (2018)

    MathSciNet  MATH  Google Scholar 

  42. K. Rajagopal, A. Karthikeyan, A. Srinivasan, Dynamical analysis and FPGA implementation of a chaotic oscillator with fractional-order memristor components. Nonlinear Dyn. 91(3), 1491–1512 (2018)

    MATH  Google Scholar 

  43. K. Rajagopal, A. Karthikeyan, A. Srinivasan, Bifurcation and chaos in time delayed fractional order chaotic memfractor oscillator and its sliding mode synchronization with uncertainties. Chaos Solitons Fract. 103, 347–356 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  44. K. Rajagopal, S.T. Kingni, A.J.M. Khalaf, Y. Shekofteh, F. Nazarimehr, Coexistence of attractors in a simple chaotic oscillator with fractional-order-memristor component: analysis, FPGA implementation, chaos control and synchronization. Eur. Phys. J. Spec. Top. 228(10), 2035–2051 (2019)

    Google Scholar 

  45. K. Diethelm, An algorithm for the numerical solution of differential equations of fractional order. Electron. Trans. Numer. Anal. 5(1), 1–6 (1997)

    MathSciNet  MATH  Google Scholar 

  46. K. Diethelm, N.J. Ford, Analysis of fractional differential equations. J. Math. Anal. Appl. 265(2), 229–248 (2002)

    MathSciNet  MATH  Google Scholar 

  47. H.H. Sun, A. Abdelwahab, B. Onaral, Linear approximation of transfer function with a pole of fractional power. IEEE Trans. Autom. Control 29(5), 441–444 (1984)

    MATH  Google Scholar 

  48. K. Diethelm, A.D. Freed, The FracPECE subroutine for the numerical solution of differential equations of fractional order. Forschung und wissenschaftliches Rechnen 1999, 57–71 (1998)

    Google Scholar 

  49. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 16(3), 285–317 (1985)

    ADS  MathSciNet  MATH  Google Scholar 

  50. K. Diethelm, N.J. Ford, A.D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29(1), 3–22 (2002)

    MathSciNet  MATH  Google Scholar 

  51. M.F. Danca, Lyapunov exponents of a class of piecewise continuous systems of fractional order. Nonlinear Dyn. 81(1), 227–237 (2015)

    MathSciNet  MATH  Google Scholar 

  52. S.S. Muni, A. Provata, Chimera states in ring-star network of Chua circuits. Nonlinear Dyn. 101(4), 2509–2521 (2020)

    Google Scholar 

  53. S.S. Muni, K. Rajagopal, A. Karthikeyan, S. Arun, Discrete hybrid Izhikevich neuron model: Nodal and network behaviours considering electromagnetic flux coupling. Chaos Solitons Fract. 155, 111759 (2022)

    Google Scholar 

  54. K. Rajagopal, A. Karthikeyan, S. Jafari, F. Parastesh, C. Volos, I. Hussain, Wave propagation and spiral wave formation in a Hindmarsh-Rose neuron model with fractional-order threshold memristor synaps. Int. J. Mod. Phys. B 34(17), 2050157 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  55. Y. Xu, J. Liu, W. Li, Quasi-synchronization of fractional-order multi-layer networks with mismatched parameters via delay-dependent impulsive feedback control. Neural Netw. 150, 43–57 (2022)

    MATH  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge that this work is funded by the Center for Nonlinear Systems, Chennai Institute of Technology (CIT), India, vide funding number CIT/CNS/2023/RP-005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karthikeyan Rajagopal.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest in publishing this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanagaraj, S., Muni, S.S., Karthikeyan, A. et al. A chaotic Hartley oscillator with fractional-order JFET and its network behaviors. Eur. Phys. J. Spec. Top. 232, 2539–2548 (2023). https://doi.org/10.1140/epjs/s11734-023-00940-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00940-3

Navigation