Skip to main content
Log in

Dissipative friction dynamics within the density-functional based tight-binding scheme

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The accurate description of an atom or molecule colliding with a metal surface remains challenging. Several strategies have been performed over the past decades to include in a Langevin dynamics the energy transfer related to electron–hole pair excitations in a phenomenological way through a friction contribution. We report the adaptation of two schemes previously developed in the literature to couple the electronic friction dynamics with the density-functional based tight-binding (DFTB) approach. The first scheme relies on an electronic isotropic friction coefficient determined from the local electronic density (local density friction approximation or LDFA). In the second one, a tensorial friction is generated from the non-adiabatic couplings of the ground electronic state with the single electron–hole excitations (electron tensor friction approximation or ETFA). New DFTB parameterization provides potential energy curves in good agreement with first-principle density-functional theory (DFT) energy calculations for selected pathways of hydrogen atom adsorbing onto the (100) silver surface or penetrating subsurface. Preliminary DFTB/Langevin dynamics simulations are presented for hydrogen atom scattering from the (100) silver surface and energy loss timescales are characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No data associated in the manuscript.

References

  1. M. Rapacioli, T. Heine, L. Dontot, M. Yusef Buey, N. Tarrat, F. Spiegelman, F. Louisnard, C. Marti, J. Cuny, M. Morinière, C. Dubosq, S. Patchkovskii, J. Frenzel, E. Michoulier, H. Duarte, L. Zchekhov, D. Salahub, 2023 deMonNano experiment, http://demon-nano.ups-tlse.fr/, (2023)

  2. S.A. Adelman, J.D. Doll, J. Chem. Phys. 64, 2375–2388 (1976)

    ADS  Google Scholar 

  3. T.A. Alrebdi, H. Souissi, F.H. Alkallas, F. Aouani, Ab initio adiabatic study of the agh system. Sci. Rep. 11, 8277 (2021)

    Google Scholar 

  4. B. Aradi, B. Hourahine, Th. Frauenheim, Dftb+, a sparse matrix-based implementation of the dftb method. J. Phys. Chem. A 111(26), 5678–5684 (2007). (PMID: 17567110)

    Google Scholar 

  5. M. Askerka, R.J. Maurer, V.S. Batista, J.C. Tully, Role of tensorial electronic friction in energy transfer at metal surfaces. Phys. Rev. Lett. 116, 217601 (2016)

    ADS  Google Scholar 

  6. B.B. Zhou, E. Carter, First principles local pseudopotential for silver: towards orbital-free density-functional theory for transition metals. J. Chem. Phys. 122, 184108 (2005)

    ADS  Google Scholar 

  7. M. Blanco-Rey, J.I. Juaristi, R. Díez Muiño, H.F. Busnengo, G.J. Kroes, M. Alducin, Electronic friction dominates hydrogen hot-atom relaxation on pd(100). Phys. Rev. Lett. 112(10), 103203 (2014)

    ADS  Google Scholar 

  8. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994)

    ADS  Google Scholar 

  9. J. Cuny, N. Tarrat, F. Spiegelman, A. Huguenot, M. Rapacioli, Density-functional tight-binding approach for metal clusters, nanoparticles, surfaces and bulk application to silver and gold. J. Phys. Condens. Matter 30(30), 303001 (2018)

    Google Scholar 

  10. J. Donohue, The Structures of the Elements (1974)

  11. P.M. Echenique, R.M. Nieminen, R.H. Ritchie, Density functional calculation of stopping power of an electron gas for slow ions. Solid State Commun. 37(10), 779–781 (1981)

    ADS  Google Scholar 

  12. M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, G. Seifert, Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 58, 7260–7268 (1998)

    ADS  Google Scholar 

  13. P. Ferrin, S. Kandoi, A.U. Nilekar, M. Mavrikakis, Hydrogen adsorption, absorption and diffusion on and in transition metal surfaces: a DFT study. Surf. Sci. 606(7), 679–689 (2012)

    ADS  Google Scholar 

  14. M. Forsblom, M. Persson, Vibrational lifetimes of cyanide and carbon monoxide on noble and transition metal surfaces. J. Chem. Phys. 127(15), 154303 (2007)

    ADS  Google Scholar 

  15. T. Frauenheim, G. Seifert, M. Elsterner, Z. Hajnal, G. Jungnickel, D. Porezag, S. Suhai, R. Scholz, A self-consistent charge density-functional based tight-binding method for predictive materials simulations in physics, chemistry and biology. Phys. Stat. Solidi (b) 217, 41–62 (2000)

    ADS  Google Scholar 

  16. T. Frauenheim, G. Seifert, M. Elstner, T. Niehaus, C. Köhler, M. Amkreutz, M. Sternberg, Z. Hajnal, A. Di Carlo, S. Suhai, Atomistic simulations of complex materials: ground-state and excited-state properties. J. Phys. Cond. Mat. 14, 3015 (2002)

    ADS  Google Scholar 

  17. M. Head-Gordon, J.C. Tully, Vibrational relaxation on metal surfaces: molecular-orbital theory and application to co/cu(100). J. Chem. Phys. 96(5), 3939–3949 (1992)

    ADS  Google Scholar 

  18. Martin Head-Gordon, John C. Tully, Molecular dynamics with electronic frictions. J. Chem. Phys. 103(23), 10137–10145 (1995)

    ADS  Google Scholar 

  19. B. Hellsing, M. Persson, Electronic damping of atomic and molecular vibrations at metal surfaces. Phys. Scr. 29(4), 360 (1984)

    ADS  Google Scholar 

  20. N. Hertl, A. Kandratsenka, A.M. Wodtke, Effective medium theory for bcc metals: electronically non-adiabatic h atom scattering in full dimensions. Phys. Chem. Chem. Phys. 24, 8738–8748 (2022)

    Google Scholar 

  21. N. Hertl, R. Martin-Barrios, O. Galparsoro, P. Larrégaray, D.J. Auerbach, D. Schwarzer, A.M. Wodtke, A. Kandratsenka, Random force in molecular dynamics with electronic friction. J. Phys. Chem. C 125(26), 14468–14473 (2021)

    Google Scholar 

  22. K.P. Huber, G. Herzberg, Constants of doiatomic molecule’s. Mol. Spectra Mol. Struct. 4, 146–291 (1979)

    Google Scholar 

  23. P. Janthon, S.A. Luo, S.M. Kozlov, F. Viñes, J. Limtrakul, D.G. Truhlar, F. Illas, Bulk properties of transition metals: a challenge for the design of universal density functionals. J. Chem. Theory Comput. 10, 3832–3839 (2014)

    Google Scholar 

  24. J.I. Juaristi, M. Alducin, R. Díez Muiño, H.F. Busnengo, A. Salin, Role of electron-hole pair excitations in the dissociative adsorption of diatomic molecules on metal surfaces. Phys. Rev. Lett. 100, 116102 (2008)

    ADS  Google Scholar 

  25. D. Kolovos-Vellianitis, J. Küppers, Abstraction of D on Ag(100) and Ag(111) surfaces by gaseous H atoms: the role of electron-hole excitations in hot atom reactions and the transition to Eley-Rideal kinetics. Surf. Sci. 548(1), 67–74 (2004)

    ADS  Google Scholar 

  26. P. Koskinen, V. Makinen, Density-functional tight-binding for beginners. Comput. Mat. Sc. 47(1), 237–253 (2009)

    Google Scholar 

  27. G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996)

    Google Scholar 

  28. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996)

    ADS  Google Scholar 

  29. G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47(1), 558–561 (1993)

    ADS  Google Scholar 

  30. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999)

    ADS  Google Scholar 

  31. R. Martin-Barrios, N. Hertl, O. Galparsoro, A. Kandratsenka, A.M. Wodtke, P. Larrégaray, H atom scattering from w(110): a benchmark for molecular dynamics with electronic friction. Phys. Chem. Chem. Phys. 24(35), 20813–20819 (2022)

    Google Scholar 

  32. R.J. Maurer, M. Askerka, V.S. Batista, J.C. Tully, Ab initio tensorial electronic friction for molecules on metal surfaces: nonadiabatic vibrational relaxation. Phys. Rev. B 94, 115432 (2016)

    ADS  Google Scholar 

  33. L.F.L. Oliveira, N. Tarrat, J. Cuny, J. Morillo, D. Lemoine, F. Spiegelman, M. Rapacioli, Benchmarking density functional based tight-binding for silver and gold materials: from small clusters to bulk. J. Phys. Chem. A 120(42), 8469–8483 (2016)

    Google Scholar 

  34. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)

    ADS  Google Scholar 

  35. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple [phys. rev. lett. 77, 3865 (1996)]. Phys. Rev. Lett. 78(7), 1396–1396 (1997)

    ADS  Google Scholar 

  36. D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, R. Kaschner, Phys. Rev. B 51, 12947–12957 (1995)

    ADS  Google Scholar 

  37. M. Rapacioli, N. Tarrat, Periodic dftb for supported clusters: implementation and application on benzene dimers deposited on graphene. Computation 10(3), 39 (2022)

    Google Scholar 

  38. S.P. Rittmeyer, J. Meyer, J.I. Juaristi, K. Reuter, Electronic friction-based vibrational lifetimes of molecular adsorbates: beyond the independent-atom approximation. Phys. Rev. Lett. 115(4), 046102 (2015)

    ADS  Google Scholar 

  39. G. Seifert, D. Porezag, T. Frauenheim, Int. J. Quant. Chem. 58, 185–192 (1996)

    Google Scholar 

  40. F. Spiegelman, N. Tarrat, J. Cuny, L. Dontot, E. Posenitskiy, C. Martí, A. Simon, M. Rapacioli, Density-functional tight-binding: basic concepts and applications to molecules and clusters. Adv. Phys.: X 5(1), 1710252 (2020)

    Google Scholar 

  41. B. Szűcs, Z. Hajnal, R. Scholz, S. Sanna, Th. Frauenheim, Theoretical study of the adsorption of a ptcda monolayer on s-passivated gaas(1 0 0). Appl. Surf. Sci. 234(1–4), 173–177 (2004)

    ADS  Google Scholar 

  42. J.C. Tully, J. Chem. Phys. 73, 6333–42 (1980)

    ADS  Google Scholar 

  43. J.C. Tully, Molecular dynamics with electronic transitions. J. Chem. Phys. 93(2), 1061–1071 (1990)

    ADS  Google Scholar 

  44. H.A. Witek, D.G. Fedorov, K. Hirao, A. Viel, P.-O. Widmark, Theoretical study of the unusual potential energy curve of the state of agh. J. Chem. Phys. 116(19), 8396–8406 (2002)

    ADS  Google Scholar 

  45. H.A. Witek, T. Nakijima, K. Hirao, Relativistic and correlated all-electron calculations on the ground and excited states of agh and auh. J. Chem. Phys. 113(18), 8015–8025 (2000)

    ADS  Google Scholar 

Download references

Acknowledgements

This study has been supported through the EUR grant NanoX \({n}^\circ\) ANR-17-EURE-0009 in the framework of the “Programme des Investissements d’Avenir”. This work was performed using HPC resources from CALMIP (Grant 2020-P18019). We thank Bruno Lepetit at LCAR for helpful discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Rapacioli.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michoulier, E., Lemoine, D., Spiegelman, F. et al. Dissipative friction dynamics within the density-functional based tight-binding scheme. Eur. Phys. J. Spec. Top. 232, 1975–1983 (2023). https://doi.org/10.1140/epjs/s11734-023-00937-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00937-y

Navigation