Skip to main content
Log in

On the sum-of-products to product-of-sums transformation between analytical low-rank approximations in finite basis representation

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In this work, we analyze and compare different possible strategies for the transformations among low-rank (i.e., few number of terms) tensor approximations. The motivation behind this is to achieve compact yet accurate representations of potential-like operators (scalar fields) in symbolic or analytical form. We do this analysis from a formal and from a numerical perspective. Specifically, we concentrate on Tucker and Canonic Polyadic ansätze. We introduce the sum-of-product finite basis representations (SOP-FBR) for both. Here, the factor matrices (aka single-particle functions) are approximated through a set of auxiliary basis functions, specific to the system. In this way, analytical, grid-independent, low-rank expressions can be obtained. We illustrate how finite-precision arithmetic hinders transformations among all these forms. The solution to this issue seems to adapt current algorithms to high-precision arithmetic at the expense of an increase in CPU times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Notes

  1. (see https://numpy.org/doc/stable/user/basics.types.html#extended-precision).

  2. (https://docs.python.org/3/library/math.html).

References

  1. X. Liu, K. K. Parhi, Tensor decomposition for model reduction in neural networks: a review. IEEE Circ. Syst. Mag. (2023)

  2. R.L. Panadés-Barrueta, D. Peláez, Low-rank sum-of-products finite-basis-representation (SOP-FBR) of potential energy surfaces. J. Chem. Phys. 153, 234110 (2020)

    Article  ADS  Google Scholar 

  3. A. Jäckle, H.-D. Meyer, Time-dependent calculation of reactive flux employing complex absorbing potentials: General aspects and application within MCTDH. J. Chem. Phys. 105, 6778 (1996)

    Article  ADS  Google Scholar 

  4. G. A. Worth, M. H. Beck, A. Jäckle, H.-D. Meyer, The MCTDH Package, H.-D. Meyer, Version 8.4.12. See http://mctdh.uni-hd.de/ (2016)

  5. G. A. Worth, K. Giri, G. W. Richings, I. Burghardt, M. H. Beck, A. Jäckle, H.-D. Meyer, The QUANTICS Package, Version 1.1, See: https://www2.chem.ucl.ac.uk/worthgrp/quantics/doc/quantics/citation.html/ (2015)

  6. A.V. Mamonov, M.A. Olshanskii, Interpolatory tensorial reduced order models for parametric dynamical systems. Comput. Methods Appl. Mech. Eng. 397, 115122 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. A. Jäckle, H.-D. Meyer, Product representation of potential energy surfaces. J. Chem. Phys. 104, 7974 (1996)

    Article  ADS  Google Scholar 

  8. D. Peláez, H.-D. Meyer, The multigrid POTFIT (MGPF) method: grid representations of potentials for quantum dynamics of large systems. J. Chem. Phys. 138, 014108 (2013)

    Article  ADS  Google Scholar 

  9. F. Otto, Multi-Layer Potfit: an accurate potential representation for efficient high-dimensional quantum dynamics. J. Chem. Phys. 140, 014106 (2014)

    Article  ADS  Google Scholar 

  10. M. Schröder, H.-D. Meyer, Transforming high-dimensional potential energy surfaces into sum-of-products form using Monte Carlo methods. J. Chem. Phys. 147, 064105 (2017)

    Article  ADS  Google Scholar 

  11. M. Schröder, Transforming high-dimensional potential energy surfaces into a canonical polyadic decomposition using Monte Carlo methods. J. Chem. Phys. 152, 024108 (2020)

    Article  Google Scholar 

  12. F. Richter, M. Hochlaf, P. Rosmus, F. Gatti, H.-D. Meyer, A study of mode-selective trans-cis isomerisation in HONO using ab initio methodology. J. Chem. Phys. 120, 1306–1317 (2004)

    Article  ADS  Google Scholar 

  13. N. Nadoveza, R. Panadés-Barrueta, L. Shi, F. Gatti, D. Peláez, Analytical high-dimensional operators in Canonical Polyadic Finite Basis Representation (CP-FBR). J. Chem. Phys. 158, 114109 (2023)

    Article  ADS  Google Scholar 

  14. T.G. Kolda, B.W. Bader, Tensor decompositions and applications. SIAM Rev. 51, 455–500 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. R.L. Panadés-Barrueta, E. Martínez-Núñez, D. Peláez, Specific reaction parameter multigrid POTFIT (SRP-MGPF): automatic generation of sum-of-products form potential energy surfaces for quantum dynamical calculations. Front. Chem. 7, 576 (2019)

    Article  ADS  Google Scholar 

  16. E. Martínez-Núñez, G. L. Barnes, D. Glowacki, S. Kopec, D. Peláez, A. Rodríguez, R. Rodríguez-Fernández, R. J. Shannon, P. T. J. J. P. Stewart, S. A. Vázquez, AutoMeKin2021: An open-source program for automated reaction discovery. J. Comput. Chem. 1–13 (2021)

  17. S. Kopec, E. Martínez-Núñez, J. Soto, D. Peláez, vdW-TSSCDS - An automated and global procedure for the computation of stationary points on intermolecular potential energy surfaces. Int. J. Quant. Chem. e26008 (2019)

  18. S. Graillat, P. Langlois, N. Louvet, Algorithms for accurate, validated and fast polynomial evaluation. Jpn. J. Ind. Appl. Math. 26, 191–214 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. D.H. Bailey, R. Barrio, J.M. Borwein, High-precision computation: mathematical physics and dynamics. Appl. Math. Comput. 218, 10106–10121 (2012)

    MathSciNet  MATH  Google Scholar 

  20. H. Jiang, S. Li, L. Cheng, F. Su, Accurate evaluation of a polynomial and its derivative in Bernstein form. Comput. Math. Appl. 60, 744–755 (2010)

    MathSciNet  MATH  Google Scholar 

  21. H. Jiang, R. Barrio, H. Li, X. Liao, L. Cheng, F. Su, Accurate evaluation of a polynomial in Chebyshev form. Appl. Math. Comput. 217, 9702–9716 (2011)

    MathSciNet  MATH  Google Scholar 

  22. O. L. Polyansky, P. Jensen, J. Tennyson, The potential energy surface of H\(_2\ ^{16}O\). J. Chem. Phys. 105, 6490–6497 PES, water (1996)

  23. J. J. P. Stewart, MOPAC2016, Stewart Computational Chemistry, Colorado Springs, CO, USA. http://OpenMOPAC.net (2016)

  24. J. Richard Shewchuk, Adaptive precision floating-point arithmetic and fast robust geometric predicates. Disc. Comput. Geom. 18, 305–363 (1997)

  25. T. mpmath development team, mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 1.3.0). http://mpmath.org/ (2023)

Download references

Acknowledgements

NN is very grateful for its Ph.D. funding from the University Paris-Saclay. The authors are very thankful to J.-Y. Bazzara and A. Borissov (ISMO) for their computer support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ramón L. Panadés-Barrueta or Daniel Peláez.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panadés-Barrueta, R.L., Nadoveza, N., Gatti, F. et al. On the sum-of-products to product-of-sums transformation between analytical low-rank approximations in finite basis representation. Eur. Phys. J. Spec. Top. 232, 1897–1904 (2023). https://doi.org/10.1140/epjs/s11734-023-00928-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00928-z

Navigation