Skip to main content
Log in

Characterization and photochemistry of XCO2 (X = F, NH2, CH3) radicals

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The XCO2 (X = F, NH2, CH3) radicals are present in the Earth atmosphere, where they are produced by the degradation of Volatile Organic Compounds (VOCs), either industrial or natural. Here, we use advanced ab initio methodologies to characterize these species in their ground and electronically excited states. Computations are carried out using the Coupled Clusters, both standard and explicitly correlated versions, and multiconfigurational approaches. Several basis sets were used. Afterward, the geometrical parameters and the total energies were extrapolated to the complete basis set (CBS) limit. We also mapped their potentials along the central bond to have insights on the XCO2X + CO2 reactions. We thus show that the ground and the lowest electronic excited states are long-lived, for which we provide a set of accurate structural and spectroscopic parameters. The upper electronic states are subject of unimolecular decompositions producing CO2 and X fragments. Our calculations show that the FCO2 (X2B2) → F(2P) + CO2 (X1Σg+) and the CH3CO2 (X2A″) → CH3(X2A″2) + CO2 (X1Σg+) processes require at least 3.5 eV energy to occur, while less energy (of  ∼ 2.5 eV) is needed for the NH2CO2 (X2A″) → NH2(X2B1) + CO2 (X1Σg+) reaction. The present findings and data are useful to characterize these radicals in the laboratory, in planetary atmospheres and in combustion and to understand their physical chemistry there.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

This manuscript has no associated data or the data will not be deposited. [Authors' comment: The data of this article consist on spectroscopic parameters, which are already provided in the tables.]

References

  1. F. W. Taylor, Encyclopedia of the solar system. Oxford, Elsevier Science & Technology, 2014, 1311 p. (ISBN 978-0-12-415845-0).

  2. A. Grant, A.T. Archibald, M.C. Cooke, D.E. Shallcross, Modelling the oxidation of seventeen volatile organic compounds to track yields of CO and CO2. Atmos. Environ. 44, 3797–3804 (2010). https://doi.org/10.1016/j.atmosenv.2010.06.049

    Article  ADS  Google Scholar 

  3. D. Schröder, M. Semialjac, H. Schwarz, Potential role of methyl-radical adducts with carbon dioxide in the Martian atmosphere. Eur. J. Mass Spectrom. 9, 287–294 (2003). https://doi.org/10.1255/ejms.552

    Article  Google Scholar 

  4. S. von Ahsen, H. Willner, G.A. Argüello, Fluorocarbon oxy and peroxy radicals. J. Fluor. Chem. 125, 1057–1070 (2004). https://doi.org/10.1016/j.jfluchem.2004.02.008

    Article  Google Scholar 

  5. P. Glarborg, J.A. Miller, B. Ruscic, S.J. Klippenstein, Modeling nitrogen chemistry in combustion. Prog. Energy Combust. Sci. 67, 31–68 (2018). https://doi.org/10.1016/j.pecs.2018.01.002

    Article  Google Scholar 

  6. J.S. Francisco, A.N. Goldstein, Z. Li, Y. Zhao, I.H. Williams, Theoretical investigation of chlorofluorocarbon degradation processes: structures and energetics of XC(O)Ox intermediates (X = F, Cl). J. Phys. Chem. 94, 4791 (1990). https://doi.org/10.1021/j100375a010

    Article  Google Scholar 

  7. M.M. Maricq, J.J. Szente, T.S. Dibble, J.S. Francisco, Atmospheric chemical kinetics of FC(O)O. J. Phys. Chem. 98, 12294–12309 (1994). https://doi.org/10.1021/j100098a027

    Article  Google Scholar 

  8. V. Mörs, G.A. Argüello, A. Hoffmann, W. Malms, E.P. Roeth, R. Zellner, Kinetics of the reactions of FC(O)O radicals with NO, NO2, O3, O(3P), CH4, and C2H6. J. Phys. Chem. 99, 15899–15910 (1995). https://doi.org/10.1021/j100043a031

    Article  Google Scholar 

  9. T.J. Wallington, T. Ellermann, O.J. Nielsen, J. Sehested, Atmospheric chemistry of FCOx radicals: UV spectra and self-reaction kinetics of FCO and FC(O)O2 and kinetics of some reactions of FCOx with O2, O3, and NO at 296 K. J. Phys. Chem. 98, 2346–2356 (1994). https://doi.org/10.1021/j100060a024

    Article  Google Scholar 

  10. G.A. Arguello, H. Grothe, M. Kronberg, H. Willner, H.-G. Mack, IR and visible absorption spectrum of the fluoroformyloxyl radical, FCO2°, isolated in inert gas matrixes. J. Phys. Chem. 99, 17525–17531 (1995). https://doi.org/10.1021/j100049a010

    Article  Google Scholar 

  11. Z. Zelinger, P. Dréan, A. Walters, J.R. Avilès Moreno, M. Bogey, H. Pernice, S. von Ahsen, H. Willner, H. Bürgere, High resolution infrared spectroscopy assisted by ab initio calculations. J. Chem. Phys. 118, 1214 (2003). https://doi.org/10.1063/1.1528607

    Article  ADS  Google Scholar 

  12. A. Perrin, M. Strizik, H. Beckers, H. Willner, Z. Zelinger, P. Pracna, V. Nevrly, E. Grigorova, First analysis of the high resolution FTIR spectrum of the ν2 band of the FCO2 radical at 9702 cm-1. Mol. Phys. 108, 723 (2010). https://doi.org/10.1080/00268970903514579

    Article  ADS  Google Scholar 

  13. S. Bailleux, Z. Zelinger, H. Beckers, H. Willner, E. Grigorova, High-resolution FTIR study of the CO stretching band ν4 of the fluoroformyloxyl radical, FCO2. J. Mol. Spectrosc. 278, 11 (2012). https://doi.org/10.1016/j.jms.2012.06.015

    Article  ADS  Google Scholar 

  14. M.M. Maricq, J.J. Szente, Z. Li, J.S. Francisco, Visible absorption spectroscopy of the B2A1–X2B2 transition of fluoroformyloxyl radical, FC(O)O. J. Chem. Phys. 98, 784 (1993). https://doi.org/10.1063/1.464241

    Article  ADS  Google Scholar 

  15. L. Kolesnikova, J. Varga, H. Beckers, M. Simecova, Z. Zelinger, L.N. Striteska, P. Kania, H. Willner, S. Urban, Detailed study of fine and hyperfine structures in rotational spectra of the free fluoroformyloxyl radical FCO2•. J. Chem. Phys. 128, 224302 (2008). https://doi.org/10.1063/1.2933499

    Article  ADS  Google Scholar 

  16. D.W. Arnold, S.E. Bradforth, E.H. Kim, D.M. Neumark, Study of halogen–carbon dioxide clusters and the fluoroformyloxyl radical by photodetachment of X-(CO2) (X=I, Cl, Br) and FCO2-. J. Chem. Phys. 102, 3493 (1995). https://doi.org/10.1063/1.468575

    Article  ADS  Google Scholar 

  17. Y. Sun, M. Wang, C. Yang, Y. Guo, Ab initio study of spectroscopic constants and anharmonic force field of FCO2 radical. J. Mol. Struct. Theochem 951, 77–81 (2010). https://doi.org/10.1016/j.theochem.2010.04.011

    Article  Google Scholar 

  18. M.M. Maricq, J.J. Szente, G.A. Khitrov, J.S. Francisco, Temperature dependent kinetics of the formation and self-reactions of FC(O)O2 and FC(O)O radicals. J. Chem. Phys. 98, 9522 (1993). https://doi.org/10.1063/1.464383

    Article  ADS  Google Scholar 

  19. W.F. Schneider, M.M. Maricq, J.S. Francisco, The vibrational spectrum of FC(O)O radical: A challenging case for single-reference electron correlation methods. J. Chem. Phys. 103, 6601 (1995). https://doi.org/10.1063/1.470389

    Article  ADS  Google Scholar 

  20. M.L. McKee, T.R. Webb, Fluoroformyl hypofluorite, fluoroformyl peroxyhypofluorite and fluoroformyl peroxide a density functional study. J. Phys. Chem. 100, 11292–11296 (1996). https://doi.org/10.1021/jp960676+

    Article  Google Scholar 

  21. T.J. Wallington, M.D. Hurley, M.M. Maricq, FTIR product study of the self-reaction of FC(O)O2 radicals. Chem. Phys. Lett. 205, 62 (1993). https://doi.org/10.1016/0009-2614(93)85167-M

    Article  ADS  Google Scholar 

  22. J.S. Francisco, A.N. Goldstein, Dissociation dynamics of FC(O)O and ClC(O)O radicals. Chem. Phys. 127, 73–79 (1988). https://doi.org/10.1016/0301-0104(88)87108-8

    Article  Google Scholar 

  23. J. Breidung, W. Thiel, Thermochemistry of the fluoroformyloxyl radical: a computational study based on coupled cluster theory. J. Phys. Chem. A 110, 1575 (2006). https://doi.org/10.1021/jp053883v

    Article  Google Scholar 

  24. C.E. Miller, J.I. Lynton, D.M. Keevil, J.S. Francisco, Dissociation pathways of peroxyacetyl nitrate (PAN). J. Phys. Chem. A 103, 11451–11459 (1999). https://doi.org/10.1021/jp992667h

    Article  Google Scholar 

  25. S.M. Park, C.H. Kwon, H.L. Kim, Dynamics of H atom production from photodissociation of acetic acid-d(1). J. Phys. Chem A. 119, 9474–9480 (2015). https://doi.org/10.1021/acs.jpca.5b05241

    Article  Google Scholar 

  26. L.R. McCunn, K.-C. Lau, M.J. Krisch, L.J. Butler, J.-W. Tsung, J.J. Lin, Unimolecular dissociation of the CH3OCO radical: an intermediate in the CH3O + CO reaction. J. Phys. Chem. A 110, 1625–1634 (2006). https://doi.org/10.1021/jp054238r

    Article  Google Scholar 

  27. E.C. Tuazon, W.P.L. Carter, R. Atkinson, Thermal decomposition of peroxyacetyl nitrate and reactions of acetyl peroxy radicals with nitric oxide and nitrogen dioxide over the temperature range 283–313 K. J. Phys. Chem. 95, 2434–2437 (1991). https://doi.org/10.1021/j100159a059

    Article  Google Scholar 

  28. W.R. Stockwell, J.B. Milford, D. Gao, Y.-J. Yang, The effect of acetyl peroxy-peroxy radical reactions on peroxyacetyl nitrate and ozone concentrations. Atmos. Environ. 29, 1591–1599 (1995). https://doi.org/10.1016/1352-2310(95)00093-E

    Article  ADS  Google Scholar 

  29. F. De Smedt, X.V. Bui, T.L. Nguyen, J. Peeters, L. Vereecken, Theoretical and experimental study of the product branching in the reaction of acetic acid with OH radicals. J. Phys. Chem. A 109, 2401–2409 (2005). https://doi.org/10.1021/jp044679v

    Article  Google Scholar 

  30. S. Crunaire, J. Tarmoul, C. Fittschen, A. Tomas, B. Lemoine, P. Coddeville, Use of cw-CRDS for studying the atmospheric oxidation of acetic acid in a simulation chamber. Appl. Phys. B 85, 467–476 (2006). https://doi.org/10.1007/s00340-006-2319-6

    Article  ADS  Google Scholar 

  31. Z. Lu, R.E. Continetti, Dynamics of the acetyloxyl radical studied by dissociative photodetachment of the acetate anion. J. Phys. Chem. A 108, 9962–9969 (2004). https://doi.org/10.1021/jp040355v

    Article  Google Scholar 

  32. X.-B. Wang, H.-K. Woo, L.-S. Wang, B. Minofar, P. Jungwirth, Determination of the electron affinity of the acetyloxyl radical. J. Phys. Chem. A 110, 5047 (2006). https://doi.org/10.1021/jp060138p

    Article  Google Scholar 

  33. A. Rauk, D. Yu, D.A. Armstrong, Carboxyl free radicals: formyloxyl (HCOO) and acetyloxyl (CH3COO) revisited. J. Am. Chem. Soc. 116, 8222–8228 (1994). https://doi.org/10.1021/ja00097a031

    Article  Google Scholar 

  34. S.D. Peyerimhoff, P.S. Skell, D.D. May, R.J. Buenker, Configuration interaction study of the three lowest electronic states in the formyl and acetyl radicals. J. Am. Chem. Soc. 104, 4515–4520 (1982). https://doi.org/10.1021/ja00381a002

    Article  Google Scholar 

  35. J.S. Francisco, The mechanism of the CH3O + CO reaction and the stability of the CH3OCO radical. Chem. Phys. 237, 1–9 (1998). https://doi.org/10.1016/S0301-0104(98)00222-5

    Article  Google Scholar 

  36. Y.Z. Zhou, S. Li, Q.S. Li, S.W. Zhang, Theoretical investigation of the decarboxylation reaction of CH3CO2 radical. J. Mol. Struct. Theochem 854, 40–45 (2008). https://doi.org/10.1016/j.theochem.2007.12.033

    Article  Google Scholar 

  37. Y. Li, S. Mani Sarathy, Probing hydrogen–nitrogen chemistry: a theoretical study of important reactions in NxHy, HCN and HNCO oxidation. Int. J. Hydrog. Energy 45, 23624–23637 (2020). https://doi.org/10.1016/j.ijhydene.2020.06.083

    Article  Google Scholar 

  38. S. Rosanka, G.H.T. Vu, H.M.T. Nguyen, T.V. Pham, U. Javed, D. Taraborrelli, L. Vereecken, Atmospheric chemical loss processes of isocyanic acid (HNCO): a combined theoretical kinetic and global modelling study. Atmos. Chem. Phys. 20, 6671–6686 (2020). https://doi.org/10.5194/acp-20-6671-2020

    Article  ADS  Google Scholar 

  39. H.M.T. Nguyen, T.N. Nguyen, Calculations on the complex mechanism of the HCNO+OH reaction. Chem. Phys. Lett. 599, 15–22 (2014). https://doi.org/10.1016/j.cplett.2014.03.001

    Article  ADS  Google Scholar 

  40. D. Sengupta, M.T. Nguyen, Mechanism of NH2 + CO2 formation in OH + HNCO reaction: Rate constant evaluation via ab initio calculations and statistical theory. J. Chem. Phys. 106, 9703 (1997). https://doi.org/10.1063/1.474090

    Article  ADS  Google Scholar 

  41. https://www.molpro.net

  42. P.J. Knowles, C. Hampel, H.-J. Werner, Coupled cluster theory for high spin, open shell reference wave functions. J. Chem. Phys. 99, 5219 (1993). https://doi.org/10.1063/1.465990

    Article  ADS  Google Scholar 

  43. P. J. Knowles, C. Hampel, H.-J. Werner. Erratum: “Coupled cluster theory for high spin, open shell reference wave functions” [ J. Chem. Phys. 99, 5219 (1993)]. J. Chem. Phys. 112, 3106 (2000). https://doi.org/10.1063/1.480886

  44. K. Raghavachari, G.W. Trucks, J.A. Pople, M. Head-Gordon, A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett. 157, 479 (1989). https://doi.org/10.1016/S0009-2614(89)87395-6

    Article  ADS  Google Scholar 

  45. T.B. Adler, G. Knizia, H.-J. Werner, A simple and efficient CCSD(T)-F12 approximation. J. Chem. Phys. 127, 221106 (2007). https://doi.org/10.1063/1.2817618

    Article  ADS  Google Scholar 

  46. H.-J. Werner, G. Knizia, F.R. Manby, Explicitly correlated coupled cluster methods with pair-specific geminals. Mol. Phys. 109, 407–417 (2011). https://doi.org/10.1080/00268976.2010.526641

    Article  ADS  Google Scholar 

  47. G. Knizia, T.B. Adler, H.-J. Werner, Simplified CCSD(T)-F12 methods: Theory and benchmarks. J. Chem. Phys. 130, 054104 (2009). https://doi.org/10.1063/1.3054300

    Article  ADS  Google Scholar 

  48. P.J. Knowles, H.-J. Werner, An efficient second-order MC SCF method for long configuration expansions. Chem. Phys. Lett. 115, 259–267 (1985). https://doi.org/10.1016/0009-2614(85)80025-7

    Article  ADS  Google Scholar 

  49. H.-J. Werner, P.J. Knowles, A second order multiconfiguration SCF procedure with optimum convergence. J. Chem. Phys. 82, 5053–5063 (1985). https://doi.org/10.1063/1.448627

    Article  ADS  Google Scholar 

  50. H.J. Werner, P.J. Knowles, An efficient internally contracted multiconfiguration–reference configuration interaction method. J. Chem. Phys. 89, 5803–5814 (1988). https://doi.org/10.1063/1.455556

    Article  ADS  Google Scholar 

  51. P.J. Knowles, H.-J. Werner, An efficient method for the evaluation of coupling coefficients in configuration interaction calculations. Chem. Phys. Lett. 145, 514–522 (1988). https://doi.org/10.1016/0009-2614(88)87412-8

    Article  ADS  Google Scholar 

  52. K.R. Shamasundar, G. Knizia, H.-J. Werner, A new internally contracted multi-reference configuration interaction method. J. Chem. Phys. 135, 054101 (2011). https://doi.org/10.1063/1.3609809

    Article  ADS  Google Scholar 

  53. T.H. Dunning, Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989). https://doi.org/10.1063/1.456153

    Article  ADS  Google Scholar 

  54. R.A. Kendall, T.H. Dunning, R.J. Harrison, Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 96, 6796–6806 (1992). https://doi.org/10.1063/1.462569

    Article  ADS  Google Scholar 

  55. F.A. Weigend, A fully direct RI-HF algorithm: Implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency. Phys. Chem. Chem. Phys. 4, 4285–4291 (2002). https://doi.org/10.1039/B204199P

    Article  Google Scholar 

  56. C. Hättig, Optimization of auxiliary basis sets for RI-MP2 and RI-CC2 calculations: core–valence and quintuple-ζ basis sets for H to Ar and QZVPP basis sets for Li to Kr. Phys. Chem. Chem. Phys. 7, 59–66 (2005). https://doi.org/10.1039/B415208E

    Article  Google Scholar 

  57. W. Klopper, Highly accurate coupled-cluster singlet and triplet pair energies from explicitly correlated calculations in comparison with extrapolation techniques. Mol. Phys. 99, 481–507 (2001). https://doi.org/10.1080/00268970010017315

    Article  ADS  Google Scholar 

  58. K.E. Yousaf, K.A. Peterson, Auxiliary RI basis sets (OptRI) matched to cc-pVnZ-F12: H, B-Ne. Al-Ar. J. Chem. Phys. 129, 184108 (2008). https://doi.org/10.1063/1.3009271

    Article  ADS  Google Scholar 

  59. T. Helgaker, W. Klopper, H. Koch, J. Noga, Basis-set convergence of correlated calculations on water. J. Chem. Phys. 106, 9639–9646 (1997). https://doi.org/10.1063/1.473863

    Article  ADS  Google Scholar 

  60. M.C. Lin, S.H. Bauer, Bimolecular reaction of N2O with CO and the recombination of O and CO as studied in a single-pulse shock tube. J. Chem. Phys. 50, 3377 (1969). https://doi.org/10.1063/1.1671561

    Article  ADS  Google Scholar 

  61. Y. Ma, L. Peng, H. Zhang, J.-G. Yu, The potential energy surfaces of the ground and excited states of carbon dioxide molecule. Russ. J. Phys. Chem. 88, 2339–2347 (2014). https://doi.org/10.1134/S0036024414130287

    Article  Google Scholar 

  62. https://webbook.nist.gov

  63. M. Hochlaf, C. Puzzarini, M.L. Senent, Towards the computations of accurate spectroscopic parameters and vibrational spectra for organic compounds. Mol. Phys. 113, 1661–1673 (2015). https://doi.org/10.1080/00268976.2014.1003986

    Article  ADS  Google Scholar 

  64. M. Hochlaf, Advances in spectroscopy and dynamics of small and medium sized molecules and clusters. Phys. Chem. Chem. Phys. 19, 21236–21261 (2017). https://doi.org/10.1039/C7CP01980G

    Article  Google Scholar 

  65. M. Hochlaf, In-silico astrochemistry of life’s building blocks: Comment on “A never-ending story in the sky: the secrets of chemical evolution” by Cristina Puzzarini and Vincenzo Barone. Phys. Life Rev. 32, 101–103 (2020). https://doi.org/10.1016/j.plrev.2019.08.008

    Article  ADS  Google Scholar 

  66. K. Mahjoubi, D.M. Benoit, N.-E. Jaidane, M. Mogren Al-Mogren, M. Hochlaf, Understanding of matrix embedding: a theoretical spectroscopic study of CO interacting with Ar clusters, surfaces and matrices. Phys. Chem. Chem. Phys. 17, 17159–17168 (2015). https://doi.org/10.1039/C5CP01672J

    Article  Google Scholar 

  67. Y. Makina, K. Mahjoubi, D.M. Benoit, N.-E. Jaidane, M. Mogren Al-Mogren, M. Hochlaf, Periodic dispersion-corrected approach for isolation spectroscopy of N2 in an argon environment: clusters, surfaces, and matrices. J. Phys. Chem. 121, 4093–4102 (2017). https://doi.org/10.1021/acs.jpca.7b00093

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Programme National “Physique et Chimie du Milieu Interstellaire” (PCMI) of Centre National de la Recherche Scientifique (CNRS)/Institut National des Sciences de l’Univers (INSU) with Institut de Chimie (INC)/Institut de Physique (INP) co-funded by Commissariat à l’Energie Atomique (CEA) and Centre National d’Etudes Spatiales (CNES). S.K. thanks a fellowship from the Tunisian ministry for higher education and research. This article is based upon work from COST Action CA18212—Molecular Dynamics in the GAS phase (MD-GAS), supported by COST (European Cooperation in Science and Technology, www.cost.eu). This work was supported by a STSM Grant to S.K. from COST Action CA18212.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data collection and analysis were performed by all authors. The first draft of the manuscript was written by MH and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M. Hochlaf.

Ethics declarations

Conflict of interests

The authors did not receive support from any organization for the submitted work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 159 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kechoindi, S., Ben Yaghlane, S., Terzi, N. et al. Characterization and photochemistry of XCO2 (X = F, NH2, CH3) radicals. Eur. Phys. J. Spec. Top. 232, 1905–1916 (2023). https://doi.org/10.1140/epjs/s11734-023-00918-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00918-1

Navigation