Skip to main content
Log in

Optimal synchronization of fractal–fractional differentials on chaotic convection for Newtonian and non-Newtonian fluids

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

A chaotic analysis of thermal convection for non-Newtonian fluid is investigated by employing fractal–fractional differential operators. The most attractive novelty of this investigation is to retrieve the chaotic behavior of non-Newtonian fluid saturated by porosity for the chaotic behavior of Newtonian fluid saturated by porosity. The mathematical modeling of governing equations of non-Newtonian fluid saturated by porosity is constructed in terms of the Caputo–Fabrizio fractal–fractional differential operator subject to the appropriate imposed conditions. For the sake of mathematical analysis, chaotic convection problem of non-Newtonian fluid is explored for dissipation, equilibrium points and criteria of stability. The numerical simulations through Adam–Bashforth method in connection with Caputo–Fabrizio fractal–fractional differential operator are performed for two cases: (1) chaotic convection of non-Newtonian fluid in presence of porosity and (2) chaotic convection of Newtonian fluid in presence of porosity. Finally, the phase portraits have been depicted to identify the similarities and differences among non-Newtonian and Newtonian fluids in presence of porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. R.I. Tanner, Engineering Rheology, vol. 52, 2nd edn. (Oxford University Press, Oxford, 2000)

    Book  MATH  Google Scholar 

  2. R.G. Owens, T.N. Phillips, Computational Rheology, vol. 14 (World Scientific, Singapore, 2002)

    Book  MATH  Google Scholar 

  3. A.A. Kashif, H. Mukarrum, M.B. Mirza, An analytic study of molybdenum disulfide nanofluids using modern approach of atangana-baleanu fractional derivatives. Eur. Phys. J. Plus 132, 439 (2017). https://doi.org/10.1140/epjp/i2017-11689-y

    Article  Google Scholar 

  4. A.U. Awan, S. Riaz, M. Ashfaq, K.A. Abro, A scientific report of singular kernel on the rate-type fluid subject to the mixed convection flow. Soft Comput (2022). https://doi.org/10.1007/s00500-022-06913-3

    Article  Google Scholar 

  5. M.J. Crochet, A.R. Davies, K. Walters, Numerical Simulation of Non-Newtonian Flow, vol. 1 (Elsevier, Amsterdam, 2012)

    MATH  Google Scholar 

  6. M. Deville, T.B. Gatski, Mathematical Modeling for Complex Fluids and Flows (Springer, Berlin, 2012)

    Book  MATH  Google Scholar 

  7. K.A. Abro, A. Atangana, A computational technique for thermal analysis in coaxial cylinder of one-dimensional flow of fractional Oldroyd-B nanofluid. Int. J. Ambient Energy 1, 1 (2021). https://doi.org/10.1080/01430750.2021.1939157

    Article  Google Scholar 

  8. C. Tao, W.-T. Wu, M. Massoudi, Natural convection in a non-newtonian fluid: e_ects of particle concentration. Fluids 4, 192 (2019)

    Article  ADS  Google Scholar 

  9. K.A. Abro, A.A. Irfan, M.A. Sikandar, K. Ilyas, On the thermal analysis of magnetohydrodynamic jeffery fluid via modern non integer order derivative. J. King Saud Univ. Sci. 31, 973–979 (2019). https://doi.org/10.1016/j.jksus.2018.07.012

    Article  Google Scholar 

  10. M. Massoudi, I. Christie, Natural convection flow of a non-Newtonian fluid between two concentric vertical cylinders. Acta Mech. 82, 11–19 (1990)

    Article  MATH  Google Scholar 

  11. A. Guha, K. Pradhan, Natural convection of non-Newtonian power-law fluids on a horizontal plate. Int. J. Heat Mass Transf. 70, 930–938 (2014)

    Article  Google Scholar 

  12. S. Bhowmick, M.M. Molla, S.C. Saha, Non-Newtonian natural convection flow along an isothermal horizontal circular cylinder using modified power-law model. Am. J. Fluid Dyn. 3(2), 20–30 (2013)

    Google Scholar 

  13. K.A. Abro, A. Atangana, J.F. Gómez-Aguilar, A comparative analysis of plasma dilution based on fractional integro-differential equation: an application to biological science. Int. J. Model. Simul. 1, 1 (2022). https://doi.org/10.1080/02286203.2021.2015818

    Article  Google Scholar 

  14. H. Mohsan, E. Rahmat, Z. Ahmed, M.B. Muhammad, Analysis of natural convective flow of non-Newtonian fluid under the effects of nanoparticles of different materials. J. Process Mech. Eng. (2018). https://doi.org/10.1177/0954408918787122

    Article  Google Scholar 

  15. S. Almani, K. Qureshi, K.A. Abro, M. Abro, I.N. Unar, Parametric study of adsorption column for arsenic removal on the basis of numerical simulations. Waves Random Complex Media (2022). https://doi.org/10.1080/17455030.2022.2122630

    Article  Google Scholar 

  16. Q. Ali, S. Riaz, I.Q. Memon, I.A. Chandio, M. Amir, I.E. Sarris, K.A. Abro, Investigation of magnetized convection for second-grade nanofluids via Prabhakar differential. Nonlinear Eng. 12, 20220286 (2023). https://doi.org/10.1515/nleng-2022-0286

    Article  ADS  Google Scholar 

  17. A. Chamkha, S. Abbasbandy, A.M. Rashad, Non-Darcy natural convection flow for non-Newtonian nanofluid over cone saturated in porous medium with uniform heat and volume fraction fluxes. Int. J. Numer. Methods Heat Fluid Flow 25, 422–437 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. K.A. Abro, A. Atangana, Synchronization via fractal-fractional differential operators on two-mass torsional vibration system consisting of motor and roller. J. Comput. Nonlinear Dyn. (2021). https://doi.org/10.1115/1.4052189

    Article  Google Scholar 

  19. B. Souayeh, K.A. Abro, Thermal characteristics of longitudinal fin with Fourier and non-Fourier heat transfer by Fourier sine transforms. Sci. Rep. 11, 20993 (2021). https://doi.org/10.1038/s41598-021-00318-2

    Article  ADS  Google Scholar 

  20. H. Xu, S.-J. Liao, Laminar flow and heat transfer in the boundary-layer of non-Newtonian fluids over a stretching flat sheet. Comput. Math. Appl. 579, 1425–1431 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. K.A. Abro, A. Atangana, J.F. Gomez-Aguilar, An analytic study of bioheat transfer Pennes model via modern non-integers differential techniques. Eur. Phys. J. Plus 136, 1144 (2021). https://doi.org/10.1140/epjp/s13360-021-02136-x

    Article  Google Scholar 

  22. J. Janela, A. Moura, A. Sequeria, A 3D non-Newtonian fluid structure interaction model for blood flow in arteries. J. Comput. Appl. Math. 234, 2783–2791 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. K.A. Abro, A. Atangana, J.F. Gomez-Aguilar, Ferromagnetic chaos in thermal convection of fluid through fractal–fractional differentiations. J. Therm. Anal. Calorimetry (2022). https://doi.org/10.1007/s10973-021-11179-2

    Article  Google Scholar 

  24. A.J. Chamkha, J.M. Al-Humoud, Mixed convection heat and mass transfer of non-Newtonian fluids from a permeable surface embedded in a porous medium. Int. J. Numer. Methods Heat Fluid Flow 17(2), 195–212 (2007). https://doi.org/10.1108/09615530710723966

    Article  Google Scholar 

  25. L.A. Panhwer, K.A. Abro, I.Q. Memon, Thermal deformity and thermolysis of magnetized and fractional Newtonian fluid with rheological investigation. Phys. Fluids. (2022). https://doi.org/10.1063/5.0093699

    Article  Google Scholar 

  26. M. Caputo, M.A. Fabrizio, New definition of fractional derivative without singular kernel. Prog. Fract. Diff. Appl. 1, 73–85 (2015)

    Google Scholar 

  27. R.P. Sunil Kumar, S.M. Chauhan, S. Hadid, Numerical investigations on COVID-19 model through singular and non-singular fractional operators. Numer. Methods Partial Differ. Equ. (2020). https://doi.org/10.1002/num.22707

    Article  Google Scholar 

  28. A. Atangana, D. Baleanu, New fractional derivative with non local and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20, 763–769 (2016)

    Article  Google Scholar 

  29. S. Kumar, A. Kumar, B. Samet, H. Dutta, A study on fractional host-parasitoid population dynamical model to describe insect species. Numer. Methods Partial Differ. Equ (2020). https://doi.org/10.1002/num.22603

    Article  Google Scholar 

  30. K.A. Abro, A. Atangana, I.Q. Memon, Comparative analysis of statistical and fractional approaches for thermal conductance through suspension of ethylene glycol nanofluid. Braz. J. Phys. (2022). https://doi.org/10.1007/s13538-022-01115-6

    Article  Google Scholar 

  31. A. Atangana, E.F.D. Goufo, The Caputo–Fabrizio fractional derivative applied to a singular perturbation problem. Int. J. Math. Model. Numer. Optim. 9, 241–253 (2019)

    Google Scholar 

  32. A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system. Chaos Solit. Fract. 102, 396–406 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. K.A. Abro, A. Atangana, A comparative study of convective fluid motion in rotating cavity via Atangana-Baleanu and Caputo-Fabrizio fractal–fractional differentiations. Eur. Phys. J. Plus 135, 226 (2020). https://doi.org/10.1140/epjp/s13360-020-00136-x

    Article  Google Scholar 

  34. K. Ilknur, Modeling the heat flow equation with fractional-fractal differentiation. Chaos Solit. Fract. 128, 83–91 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. H. Khan, J. Alzabut, O. Tunç, M.K.A. Kaabar, A fractal-fractional COVID-19 model with a negative impact of quarantine on the diabetic patients. Results Control Optim. 10, 100199 (2023). https://doi.org/10.1016/j.rico.2023.100199

    Article  Google Scholar 

  36. M.M. Matar, M.I. Abbas, J. Alzabut, M.K.A. Kaabar, S. Etemad, S. Rezapour, Investigation of the p-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives. Adv. Differ. Equ. 1, 1–18 (2021)

    MathSciNet  MATH  Google Scholar 

  37. M.A. Khan, S. Ullah, S. Kumar, A robust study on 2019-nCOV outbreaks through non-singular derivative. Eur. Phys. J. Plus 136, 168 (2021). https://doi.org/10.1140/epjp/s13360-021-01159-8

    Article  Google Scholar 

  38. B. Bo-Cheng, X. Jian-Ping, Z. Guo-Hua, M. Zheng-Hua, Z. Ling, Chaotic memristive circuit: equivalent circuit realization and dynamical analysis. Chin. Phys. B 20(12), 1–12 (2011)

    Google Scholar 

  39. S. Kumar, M.S. Ranbir Kumar, B.S. Osman, A wavelet based numerical scheme for fractional order SEIR epidemic of measles by using Genocchi polynomials. Numer. Methods Partial Differ. Equ. 37(2), 1250–1268 (2021). https://doi.org/10.1002/num.2257

    Article  MathSciNet  Google Scholar 

  40. A. Buscarino, L. Fortuna, M. Frasca, L.V. Gambuzza, G. Sciuto, Memristive chaotic circuits based on cellular nonlinear networks. Int. J. Bifur. Chaos 22(03), 1–15 (2012)

    Article  Google Scholar 

  41. K.A. Abro, A. Atangana, J.F. Gómez-Aguilar, Chaos control and characterization of brushless DC motor via integral and differential fractal-fractional techniques. Int. J. Model. Simul. (2022). https://doi.org/10.1080/02286203.2022.2086743

    Article  Google Scholar 

  42. A. Buscarino, L. Fortuna, M. Frasca, L.V. Gambuzza, A chaotic circuit based on Hewlett-Packard memristor. Chaos Interdiscip. J. Nonlinear Sci. 22(2), 1–8 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Q. Ali, M.F. Yassen, S.A. Asiri, A.A. Pasha, K.A. Abro, Role of viscoelasticity on thermo-electromechanical system subjected to annular regions of cylinders in the existence of a uniform inclined magnetic field. Eur. Phys. J. Plus 137, 770 (2022). https://doi.org/10.1140/epjp/s13360-022-02951-w

    Article  Google Scholar 

  44. J.F. Gomez-Aguilar, Fundamental solutions to electrical circuits of non-integer order via fractional derivatives with and without singular kernels. Eur Phys J Plus 133(5), 197 (2018)

    Article  MathSciNet  Google Scholar 

  45. H. Mohammadi, S. Kumar, S. Rezapour, S. Etemad, A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos Solitons Fract. 144, 110668 (2021)

    Article  MathSciNet  Google Scholar 

  46. B. Souayeh, K.A. Abro, A. Siyal, N. Hdhiri, F. Hammami, M. Al-Shaeli, S. Nisrin Alnaim, S.K. Raju, M.W. Alam, T. Alsheddi, Role of copper and alumina for heat transfer in hybrid nanofluid by using Fourier sine transform. Sci. Reports 12, 11307 (2022). https://doi.org/10.1038/s41598-022-14936-x

    Article  ADS  Google Scholar 

  47. O.A. Arqub, Numerical solutions for the robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm. Int. J. Numer. Methods Heat Fluid Flow 28, 828–856 (2018)

    Article  Google Scholar 

  48. A.A. Kashif, N.M. Muhammad, J.F. Gomez-Aguilar, Functional application of Fourier sine transform in radiating gas flow with non-singular and non-local kernel. J. Braz. Soc. Mech. Sci. Eng. 41, 400 (2019). https://doi.org/10.1007/s40430-019-1899-0

    Article  Google Scholar 

  49. K.A. Abro, J.F. Gomez-Aguilar, A comparison of heat and mass transfer on a Walter’s-B fluid via Caputo–Fabrizio versus Atangana-Baleanu fractional derivatives using the Fox-H function. Eur. Phys. J. Plus 134, 101 (2019). https://doi.org/10.1140/epjp/i2019-12507-4

    Article  Google Scholar 

  50. M. Amir, Q. Ali, K.A. Abro, A. Raza, Characterization nanoparticles via Newtonian heating for fractionalized hybrid nanofluid in a channel flow. J. Nanofluids (2022). https://doi.org/10.1166/jon.2023.1982

    Article  Google Scholar 

  51. J.F. Gomez-Aguilar, Chaos and multiple attractors in a fractal-fractional Shinriki’s oscillator model. Phys. A (2019). https://doi.org/10.1016/j.physa.2019.122918

    Article  MathSciNet  MATH  Google Scholar 

  52. D. Kumar, J. Singh, K. Tanwar, D. Baleanu, A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler laws. Int. J. Heat Mass Transf. 138, 1222–1227 (2019)

    Article  Google Scholar 

  53. A. Atangana, M.A. Khan, Fatmawati, Modeling and analysis of competition model of bank data with fractal-fractional Caputo-Fabrizio operator. Alexandria Eng. J. 59(4), 1985–1998 (2020)

    Article  Google Scholar 

  54. Z. Li, Z. Liu, M.A. Khan, Fractional investigation of bank data with fractal-fractional Caputo derivative. Chaos Solit. Fract. 131, 109528 (2020)

    Article  MathSciNet  Google Scholar 

  55. W. Wang, M.A. Khan, Analysis and numerical simulation of fractional model of bank data with fractal-fractional Atangana-Baleanu derivative. J Comput Appl. Math. 369, 112646 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

José Francisco Gómez Aguilar acknowledges the support provided by CONACyT: cátedras CONACyT para jóvenes investigadores 2014 and SNI-CONACyT.

Author information

Authors and Affiliations

Authors

Contributions

KAA: conceptualization, methodology, resources, formal analysis, writing—original draft, supervision; AA: conceptualization, methodology, software, writing—original draft preparation; JFG-A: conceptualization, methodology, writing—review editing, validation, final draft preparation, supervision.

Corresponding authors

Correspondence to Kashif Ali Abro or J. F. Gomez-Aguilar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abro, K.A., Atangana, A. & Gomez-Aguilar, J.F. Optimal synchronization of fractal–fractional differentials on chaotic convection for Newtonian and non-Newtonian fluids. Eur. Phys. J. Spec. Top. 232, 2403–2414 (2023). https://doi.org/10.1140/epjs/s11734-023-00913-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00913-6

Navigation