Skip to main content
Log in

Overview of theoretical research in France on ultrafast processes in molecules

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Ultrafast processes initiated in molecules by light or collision are extremely widespread. The intrinsic timescale of nuclear motion is the femtosecond (1 fs = 10\(^{-15}\) s) and the one of electrons, lighter particles, is the attosecond (1 as = 10\(^{-18}\) s). Dynamics simulations are essential for understanding the mechanism, rate and yield of ultrafast processes. In this article, we review recent theoretical works, performed in France, to describe photon-induced or collision-induced ultrafast processes in molecules. In particular, we discuss recent studies on quantum dynamics of small molecules or Hamiltonian models, and works focused on “on-the-fly” mixed quantum-classical dynamics of molecules. Both state-of-the-art applications and method developments towards overcoming current bottlenecks are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No data associated in the manuscript.

References

  1. X. Ma, H. Tian, Photochemistry and photophysics. Concepts, research, applications. By Vincenzo Balzani, Paola Ceroni and Alberto Juris. Angew. Chem. Int. Ed. 53(34), 8817–8817 (2014). https://doi.org/10.1002/anie.201405219

    Article  Google Scholar 

  2. A.H. Zewail, Femtochemistry: atomic-scale dynamics of the chemical bond. J. Phys. Chem. A 104(24), 5660–5694 (2000). https://doi.org/10.1021/jp001460h

    Article  Google Scholar 

  3. P.M. Paul, E.S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou, H.G. Muller, P. Agostini, Observation of a train of attosecond pulses from high harmonic generation. Science 292(5522), 1689–1692 (2001). https://doi.org/10.1126/science.1059413

    Article  ADS  Google Scholar 

  4. M. Hentschel, R. Kienberger, C. Spielmann, G.A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, F. Krausz, Attosecond metrology. Nature 414(6863), 509–513 (2001). https://doi.org/10.1038/35107000

    Article  ADS  Google Scholar 

  5. M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, F. Krausz, Time-resolved atomic inner-shell spectroscopy. Nature 419(6909), 803–807 (2002)

    Article  ADS  Google Scholar 

  6. A.L. Cavalieri, N. Müller, T. Uphues, V.S. Yakovlev, A. Baltuska, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P.M. Echenique, R. Kienberger, F. Krausz, U. Heinzmann, Attosecond spectroscopy in condensed matter. Nature 449, 1029 (2007). https://doi.org/10.1038/nature06229

    Article  ADS  Google Scholar 

  7. L. Belshaw, F. Calegari, M.J. Duffy, A. Trabattoni, L. Poletto, M. Nisoli, J.B. Greenwood, Observation of ultrafast charge migration in an amino acid. J. Phys. Chem. Lett. 3(24), 3751–3754 (2012). https://doi.org/10.1021/jz3016028

    Article  Google Scholar 

  8. M. Born, K. Huang, Dynamical Properties of Crystal Lattices (Clarendon, Oxford, 1968)

    MATH  Google Scholar 

  9. F. Agostini, B.F. Curchod, Different flavors of nonadiabatic molecular dynamics. Wiley Interdisciplinary Rev. Comput. Mol. Sci. 9(5), 1417 (2019)

    Article  Google Scholar 

  10. R. Crespo-Otero, M. Barbatti, Recent advances and perspectives on nonadiabatic mixed quantum-classical dynamics. Chem. Rev. 118(15), 7026–7068 (2018). https://doi.org/10.1021/acs.chemrev.7b00577. (PMID: 29767966)

    Article  Google Scholar 

  11. G.A. Worth, M.H. Beck, A. Jäckle, H.-D. Meyer, The MCTDH package, Version 8.3. See http://www.pci.uni-heildelberg.de/tc/usr/mctdh/ (2003)

  12. F. Catoire, R.E.F. Silva, P. Rivière, H. Bachau, F. Martín, Molecular resolvent-operator method: electronic and nuclear dynamics in strong-field ionization. Phys. Rev. A 89, 023415 (2014). https://doi.org/10.1103/PhysRevA.89.023415

    Article  ADS  Google Scholar 

  13. F. Catoire, H. Bachau, Study of the he\(^{2+}_2\) dynamics induced by a strong IR field by means of the resolvent technique. J. Phys. B: At. Mol. Opt. Phys. 47(12), 124028 (2014). https://doi.org/10.1088/0953-4075/47/12/124028

    Article  ADS  Google Scholar 

  14. S. Saugout, C. Cornaggia, A. Suzor-Weiner, E. Charron, Ultrafast electronuclear dynamics of \({\rm h }_{2}\) double ionization. Phys. Rev. Lett. 98, 253003 (2007). https://doi.org/10.1103/PhysRevLett.98.253003

    Article  ADS  Google Scholar 

  15. C. Cornaggia, Temporal analysis of fractional revivals of molecular observables following impulsive alignment. Phys. Rev. A 91, 043426 (2015). https://doi.org/10.1103/PhysRevA.91.043426

    Article  ADS  Google Scholar 

  16. L. Quaglia, M. Brewczyk, C. Cornaggia, Molecular reorientation in intense femtosecond laser fields. Phys. Rev. A 65, 031404 (2002). https://doi.org/10.1103/PhysRevA.65.031404

    Article  ADS  Google Scholar 

  17. T. Latka, V. Shirvanyan, M. Ossiander, O. Razskazovskaya, A. Guggenmos, M. Jobst, M. Fieß, S. Holzner, A. Sommer, M. Schultze, C. Jakubeit, J. Riemensberger, B. Bernhardt, W. Helml, F. Gatti, B. Lasorne, D. Lauvergnat, P. Decleva, G.J. Halász, A. Vibók, R. Kienberger, Femtosecond wave-packet revivals in ozone. Phys. Rev. A 99, 063405 (2019). https://doi.org/10.1103/PhysRevA.99.063405

    Article  ADS  Google Scholar 

  18. P.J. Castro, A. Perveaux, D. Lauvergnat, M. Reguero, B. Lasorne, Ultrafast internal conversion in 4-aminobenzonitrile occurs sequentially along the seam. Chem. Phys. 509, 30–36 (2018). https://doi.org/10.1016/j.chemphys.2018.03.013 (High-dimensional quantum dynamics (on the occasion of the 70th birthday of Hans-Dieter Meyer))

    Article  Google Scholar 

  19. M. Alías-Rodríguez, C. de Graaf, M. Huix-Rotllant, Ultrafast intersystem crossing in xanthone from wavepacket dynamics. J. Am. Chem. Soc. 143(51), 21474–21477 (2021). https://doi.org/10.1021/jacs.1c07039

    Article  Google Scholar 

  20. K. Falahati, H. Tamura, I. Burghardt, M. Huix-Rotllant, Ultrafast carbon monoxide photolysis and heme spin-crossover in myoglobin via nonadiabatic quantum dynamics. Nat. Commun. 9(1), 4502 (2018). https://doi.org/10.1038/s41467-018-06615-1

    Article  ADS  Google Scholar 

  21. C.H. Yuen, D. Lapierre, F. Gatti, V. Kokoouline, V.G. Tyuterev, The role of ozone vibrational resonances in the isotope exchange reaction 16o16o + 18o -> 18o16o + 16o: the time-dependent picture. J. Phys. Chem. A 123(36), 7733–7743 (2019). https://doi.org/10.1021/acs.jpca.9b06139. (PMID: 31408343)

    Article  Google Scholar 

  22. Z. Zhang, F. Gatti, D.H. Zhang, Full dimensional quantum mechanical calculations of the reaction probability of the h + nh3 collision based on a mixed jacobi and radau description. J. Chem. Phys. 150(20), 204301 (2019). https://doi.org/10.1063/1.5096047

    Article  ADS  Google Scholar 

  23. Z. Zhang, F. Gatti, D.H. Zhang, Full-dimensional quantum mechanical calculations of the reaction probability of the h + ch4 reaction based on a mixed jacobi and radau description. J. Chem. Phys. 152(20), 201101 (2020). https://doi.org/10.1063/5.0009721

    Article  ADS  Google Scholar 

  24. D. Mendive-Tapia, E. Mangaud, T. Firmino, A. de la Lande, M. Desouter-Lecomte, H.-D. Meyer, F. Gatti, Multidimensional quantum mechanical modeling of electron transfer and electronic coherence in plant cryptochromes: The role of initial bath conditions. J. Phys. Chem. B 122(1), 126–136 (2018). https://doi.org/10.1021/acs.jpcb.7b10412. (PMID: 29216421)

    Article  Google Scholar 

  25. E. Mangaud, R. Puthumpally-Joseph, D. Sugny, C. Meier, O. Atabek, M. Desouter-Lecomte, Non-markovianity in the optimal control of an open quantum system described by hierarchical equations of motion. New J. Phys. 20(4), 043050 (2018). https://doi.org/10.1088/1367-2630/aab651

    Article  ADS  Google Scholar 

  26. M. Fumanal, E. Gindensperger, C. Daniel, Ultrafast intersystem crossing vs internal conversion in \(\alpha\)-diimine transition metal complexes: quantum evidence. J. Phys. Chem. Lett. 9(17), 5189–5195 (2018). https://doi.org/10.1021/acs.jpclett.8b02319. (PMID: 30145893)

    Article  Google Scholar 

  27. M. Fumanal, C. Daniel, E. Gindensperger, Excited-state dynamics of [mn(im)(co)3(phen)]+: photocorm, catalyst, luminescent probe? J. Chem. Phys. 154(15), 154102 (2021). https://doi.org/10.1063/5.0044108

    Article  ADS  Google Scholar 

  28. M. Fumanal, E. Gindensperger, C. Daniel, Ligand substitution and conformational effects on the ultrafast luminescent decay of [re(co)3(phen)(l)]+ (l = imidazole, pyridine): non-adiabatic quantum dynamics. Phys. Chem. Chem. Phys. 20, 1134–1141 (2018). https://doi.org/10.1039/C7CP07540E

    Article  Google Scholar 

  29. C. Daniel, Ultrafast processes: coordination chemistry and quantum theory. Phys. Chem. Chem. Phys. 23, 43–58 (2021). https://doi.org/10.1039/D0CP05116K

    Article  Google Scholar 

  30. A. Nauts, D. Lauvergnat, Numerical on-the-fly implementation of the action of the kinetic energy operator on a vibrational wave function: application to methanol. Mol. Phys. 116(23–24), 3701–3709 (2018). https://doi.org/10.1080/00268976.2018.1473652

    Article  ADS  Google Scholar 

  31. E. Marsili, F. Agostini, A. Nauts, D. Lauvergnat, Quantum dynamics with curvilinear coordinates: models and kinetic energy operator. Philos. Trans. Roy. Soc. A: Math. Phys. Eng. Sci. 380(2223), 20200388 (2022). https://doi.org/10.1098/rsta.2020.0388

    Article  ADS  Google Scholar 

  32. M. Fumanal, F. Plasser, S. Mai, C. Daniel, E. Gindensperger, Interstate vibronic coupling constants between electronic excited states for complex molecules. J. Chem. Phys. 148(12), 124119 (2018). https://doi.org/10.1063/1.5022760

    Article  ADS  Google Scholar 

  33. S. Yalouz, E. Koridon, B. Senjean, B. Lasorne, F. Buda, L. Visscher, Analytical nonadiabatic couplings and gradients within the state-averaged orbital-optimized variational quantum eigensolver. J. Chem. Theory Comput. 18(2), 776–794 (2022). https://doi.org/10.1021/acs.jctc.1c00995. (PMID: 35029988)

    Article  Google Scholar 

  34. E.K.-L. Ho, B. Lasorne, Diabatic pseudofragmentation and nonadiabatic excitation-energy transfer in meta-substituted dendrimer building blocks. Comput. Theor. Chem. 1156, 25–36 (2019)

    Article  Google Scholar 

  35. Y. Zhang, P. Su, B. Lasorne, B. Braïda, W. Wu, A novel valence-bond-based automatic diabatization method by compression. J. Phys. Chem. Lett. 11(13), 5295–5301 (2020). https://doi.org/10.1021/acs.jpclett.0c01466. (PMID: 32521163)

    Article  Google Scholar 

  36. Y. Zhang, W. Wang, B. Lasorne, P. Su, W. Wu, Diabatization around conical intersections with a new phase-corrected valence-bond-based compression approach. J. Phys. Chem. Lett. 12(7), 1885–1892 (2021). https://doi.org/10.1021/acs.jpclett.0c03506. (PMID: 33587630)

    Article  Google Scholar 

  37. R.L. Panadés-Barrueta, E. Martínez-Núñez, D. Peláez, Specific reaction parameter multigrid potfit (srp-mgpf): automatic generation of sum-of-products form potential energy surfaces for quantum dynamical calculations. Front. Chem. (2019). https://doi.org/10.3389/fchem.2019.00576

    Article  Google Scholar 

  38. I.C.D. Merritt, D. Jacquemin, M. Vacher, cis \(\rightarrow\) trans photoisomerisation of azobenzene: a fresh theoretical look. Phys. Chem. Chem. Phys. 23, 19155–19165 (2021). https://doi.org/10.1039/D1CP01873F

    Article  Google Scholar 

  39. O. Schalk, J. Galiana, T. Geng, T.L. Larsson, R.D. Thomas, I. Fdez Galván, T. Hansson, M. Vacher, Competition between ring-puckering and ring-opening excited state reactions exemplified on 5h-furan-2-one and derivatives. J. Chem. Phys. 152(6), 064301 (2020). https://doi.org/10.1063/1.5129366

    Article  ADS  Google Scholar 

  40. J. Norell, M. Odelius, M. Vacher, Ultrafast dynamics of photo-excited 2-thiopyridone: theoretical insights into triplet state population and proton transfer pathways. Struct. Dyn. 7(2), 024101 (2020). https://doi.org/10.1063/1.5143228

    Article  Google Scholar 

  41. I. Fdez Galván, A. Brakestad, M. Vacher, Role of conical intersection seam topography in the chemiexcitation of 1,2-dioxetanes. Phys. Chem. Chem. Phys. 24, 1638–1653 (2022). https://doi.org/10.1039/D1CP05028A

    Article  Google Scholar 

  42. W. Park, S. Lee, M. Huix-Rotllant, M. Filatov, C.H. Choi, Impact of the dynamic electron correlation on the unusually long excited-state lifetime of thymine. J. Phys. Chem. Lett. 12(18), 4339–4346 (2021). https://doi.org/10.1021/acs.jpclett.1c00712. (PMID: 33929858)

    Article  Google Scholar 

  43. K. Falahati, C. Hamerla, M. Huix-Rotllant, I. Burghardt, Ultrafast photochemistry of free-base porphyrin: a theoretical investigation of b \(\rightarrow\) q internal conversion mediated by dark states. Phys. Chem. Chem. Phys. 20, 12483–12492 (2018). https://doi.org/10.1039/C8CP00657A

    Article  Google Scholar 

  44. T.T. Abiola, N.N. Rodrigues, C. Ho, D.J.L. Coxon, M.D. Horbury, J.M. Toldo, M.T. do Casal, B. Rioux, C. Peyrot, M.M. Mention, P. Balaguer, M. Barbatti, F. Allais, V.G. Stavros, New generation uv-a filters: understanding their photodynamics on a human skin mimic. J. Phys. Chem. Lett. 12(1), 337–344 (2021). https://doi.org/10.1021/acs.jpclett.0c03004

    Article  Google Scholar 

  45. J.M. Toldo, M.T. do Casal, M. Barbatti, Mechanistic aspects of the photophysics of uva filters based on meldrum derivatives. J. Phys. Chem. A 125(25), 5499–5508 (2021). https://doi.org/10.1021/acs.jpca.1c03315

    Article  Google Scholar 

  46. T.M. Cardozo, A.P. Galliez, I. Borges, F. Plasser, A.J.A. Aquino, M. Barbatti, H. Lischka, Dynamics of benzene excimer formation from the parallel-displaced dimer. Phys. Chem. Chem. Phys. 21, 13916–13924 (2019). https://doi.org/10.1039/C8CP06354K

    Article  Google Scholar 

  47. G. Pereira Rodrigues, T.M. Lopes de Lima, R.B. de Andrade, E. Ventura, S.A. de Monte, M. Barbatti, Photoinduced formation of h-bonded ion pair in hcfc-133a. J. Phys. Chem. A 123(10), 1953–1961 (2019). https://doi.org/10.1021/acs.jpca.8b12482

    Article  Google Scholar 

  48. T.-S. Zhang, Z.-W. Li, Q. Fang, M. Barbatti, W.-H. Fang, G. Cui, Stereoselective excited-state isomerization and decay paths in cis-cyclobiazobenzene. J. Phys. Chem. A 123(29), 6144–6151 (2019). https://doi.org/10.1021/acs.jpca.9b04372. (PMID: 31246461)

    Article  Google Scholar 

  49. A. Francés-Monerris, M. Lineros-Rosa, M.A. Miranda, V. Lhiaubet-Vallet, A. Monari, Photoinduced intersystem crossing in dna oxidative lesions and epigenetic intermediates. Chem. Commun. 56, 4404–4407 (2020). https://doi.org/10.1039/D0CC01132K

    Article  Google Scholar 

  50. R. Losantos, A. Pasc, A. Monari, Don’t help them to bury the light. The interplay between intersystem crossing and hydrogen transfer in photoexcited curcumin revealed by surface-hopping dynamics. Phys. Chem. Chem. Phys. 23, 24757–24764 (2021). https://doi.org/10.1039/D1CP03617C

    Article  Google Scholar 

  51. M. Nazari, C.D. Bösch, A. Rondi, A. Francés-Monerris, M. Marazzi, E. Lognon, M. Gazzetto, S.M. Langenegger, R. Häner, T. Feurer, A. Monari, A. Cannizzo, Ultrafast dynamics in polycyclic aromatic hydrocarbons: the key case of conical intersections at higher excited states and their role in the photophysics of phenanthrene monomer. Phys. Chem. Chem. Phys. 21, 16981–16988 (2019). https://doi.org/10.1039/C9CP03147B

    Article  Google Scholar 

  52. F. Kossoski, M. Barbatti, Nuclear ensemble approach with importance sampling. J. Chem. Theory Comput. 14(6), 3173–3183 (2018). https://doi.org/10.1021/acs.jctc.8b00059. (PMID: 29694040)

    Article  Google Scholar 

  53. M. Barbatti, Simulation of excitation by sunlight in mixed quantum-classical dynamics. J. Chem. Theory Comput. 16(8), 4849–4856 (2020). https://doi.org/10.1021/acs.jctc.0c00501. (PMID: 32579345)

    Article  Google Scholar 

  54. M. Barbatti, Velocity adjustment in surface hopping: ethylene as a case study of the maximum error caused by direction choice. J. Chem. Theory Comput. 17(5), 3010–3018 (2021). https://doi.org/10.1021/acs.jctc.1c00012. (PMID: 33844922)

    Article  Google Scholar 

  55. F. Kossoski, M. Barbatti, Nonadiabatic dynamics in multidimensional complex potential energy surfaces. Chem. Sci. 11, 9827–9835 (2020). https://doi.org/10.1039/D0SC04197A

    Article  Google Scholar 

  56. P.O. Dral, M. Barbatti, W. Thiel, Nonadiabatic excited-state dynamics with machine learning. J. Phys. Chem. Lett. 9(19), 5660–5663 (2018). https://doi.org/10.1021/acs.jpclett.8b02469. (PMID: 30200766)

    Article  Google Scholar 

  57. S. Mukherjee, M. Pinheiro, B. Demoulin, M. Barbatti, Simulations of molecular photodynamics in long timescales. Philos. Trans. Roy. Soc. A: Math. Phys. Eng. Sci. 380(2223), 20200382 (2022). https://doi.org/10.1098/rsta.2020.0382

    Article  ADS  Google Scholar 

  58. F. Agostini, An exact-factorization perspective on quantum-classical approaches to excited-state dynamics. Eur. Phys. J. B 91(7), 143 (2018). https://doi.org/10.1140/epjb/e2018-90085-9

    Article  ADS  MathSciNet  Google Scholar 

  59. A. Abedi, N.T. Maitra, E.K.U. Gross, Exact factorization of the time-dependent electron-nuclear wave function. Phys. Rev. Lett. 105, 123002 (2010). https://doi.org/10.1103/PhysRevLett.105.123002

    Article  ADS  Google Scholar 

  60. G.H. Gossel, F. Agostini, N.T. Maitra, Coupled-trajectory mixed quantum-classical algorithm: a deconstruction. J. Chem. Theory Comput. 14(9), 4513–4529 (2018). https://doi.org/10.1021/acs.jctc.8b00449. (PMID: 30063343)

    Article  Google Scholar 

  61. B.F.E. Curchod, F. Agostini, On the dynamics through a conical intersection. J. Phys. Chem. Lett. 8(4), 831–837 (2017). https://doi.org/10.1021/acs.jpclett.7b00043. (PMID: 28151670)

    Article  Google Scholar 

  62. F. Talotta, S. Morisset, N. Rougeau, D. Lauvergnat, F. Agostini, Spin-orbit interactions in ultrafast molecular processes. Phys. Rev. Lett. 124, 033001 (2020). https://doi.org/10.1103/PhysRevLett.124.033001

    Article  ADS  Google Scholar 

  63. F. Talotta, S. Morisset, N. Rougeau, D. Lauvergnat, F. Agostini, Internal conversion and intersystem crossing with the exact factorization. J. Chem. Theory Comput. 16(8), 4833–4848 (2020). https://doi.org/10.1021/acs.jctc.0c00493

    Article  Google Scholar 

  64. F. Agostini, I. Tavernelli, G. Ciccotti, Nuclear quantum effects in electronic (non)adiabatic dynamics. Eur. Phys. J. B 91(7), 139 (2018). https://doi.org/10.1140/epjb/e2018-90144-3

    Article  ADS  MathSciNet  Google Scholar 

  65. A. Scherrer, F. Agostini, D. Sebastiani, E.K.U. Gross, R. Vuilleumier, On the mass of atoms in molecules: beyond the born-oppenheimer approximation. Phys. Rev. X 7, 031035 (2017). https://doi.org/10.1103/PhysRevX.7.031035

    Article  Google Scholar 

  66. M. Schirò, F.G. Eich, F. Agostini, Quantum-classical nonadiabatic dynamics of floquet driven systems. J. Chem. Phys. 154(11), 114101 (2021). https://doi.org/10.1063/5.0043790

    Article  ADS  Google Scholar 

  67. M. Vacher, M.J. Bearpark, M.A. Robb, Direct methods for non-adiabatic dynamics: connecting the single-set variational multi-configuration gaussian (vmcg) and ehrenfest perspectives. Theoret. Chem. Acc. 135(8), 1–11 (2016). https://doi.org/10.1007/s00214-016-1937-2

    Article  Google Scholar 

  68. D.R. Austin, A.S. Johnson, F. McGrath, D. Wood, L. Miseikis, T. Siegel, P. Hawkins, A. Harvey, Z. Mašín, S. Patchkovskii, M. Vacher, J.P. Malhado, M.Y. Ivanov, O. Smirnova, J.P. Marangos, Extracting sub-cycle electronic and nuclear dynamics from high harmonic spectra. Sci. Rep. 11(1), 2485 (2021). https://doi.org/10.1038/s41598-021-82232-1

    Article  Google Scholar 

Download references

Acknowledegment

M.V. thanks Jérémie Caillat for fruitfull discussions at the beginning of the writing of this mini-review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morgane Vacher.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vacher, M. Overview of theoretical research in France on ultrafast processes in molecules. Eur. Phys. J. Spec. Top. 232, 2069–2079 (2023). https://doi.org/10.1140/epjs/s11734-023-00906-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00906-5

Navigation