Skip to main content
Log in

A computational study of fibrinogen-induced alteration in microvascular blood flow in COVID-19

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Patients infected with COVID-19 may experience significant and long-lasting changes in the mechanical and rheological properties of their blood cells, leading to microvascular dysfunction and other vascular complications such as microthrombosis. In this study, we perform detailed computational simulations to investigate the fibrinogen-dependent changes in microvascular blood flow. First, we develop a coarse-grained molecular model of plasma fibrinogen to investigate the correlation between fibrinogen concentration and plasma viscosity. Our simulation results show that plasma viscosity increases exponentially with fibrinogen concentration. We then use a coarse-grained RBC model to quantify the fibrinogen-dependent aggregation strength of RBC doublets and compare it with available experimental results. Next, we probe the effect of fibrinogen concentration on COVID-19 blood viscosity. Our simulation results show that increased plasma viscosity and blood cell aggregation are responsible for elevated blood viscosity. Finally, we quantify the alterations in microvascular blood flow in response to changes in cell adhesion. We find that the recruitment of WBCs and platelets would slow blood flow. The WBC–platelet adhesive interaction exacerbates the blockages, forming a complete blood occlusion at relatively low blood velocities. As blood velocities increase, the larger clusters of blood cells occluded by cell adhesion are more likely to dislodge from the site of inflammation. This computational study advances our understanding of the complex cell–cell interactions that influence microvascular blood flow. It highlights the importance of fibrinogen-induced changes in plasma viscosity, blood cell aggregation and adhesion in the risk of microvascular complications in patients with COVID-19.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The corresponding author’s data supporting this study’s findings are available upon reasonable request. This manuscript has data included as electronic supplementary material.

References

  1. A.S. Popel, P.C. Johnson, Microcirculation and hemorheology. Annu. Rev. Fluid Mech. 37, 43–69 (2005)

    MathSciNet  ADS  Google Scholar 

  2. J. Sun, K. Han, M. Xu, L. Li, J. Qian, L. Li, X. Li, Blood viscosity in subjects with type 2 diabetes mellitus: roles of hyperglycemia and elevated plasma fibrinogen. Front. Physiol. 13, 827428 (2022)

    Google Scholar 

  3. G. Goshua, A.B. Pine, M.L. Meizlish, C.-H. Chang, H. Zhang, P. Bahel, A. Baluha, N. Bar, R.D. Bona, A.J. Burns et al., Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol. 7, 575–582 (2020)

    Google Scholar 

  4. R. Escher, N. Breakey, B. Lämmle, Severe COVID-19 infection associated with endothelial activation. Thromb. Res. 190, 62 (2020)

    Google Scholar 

  5. V.S.K. Edul, J.F.C. Eguillor, G. Ferrara, E. Estenssoro, D.S.P. Siles, C.E. Cesio, A. Dubin, Microcirculation alterations in severe COVID-19 pneumonia. J. Crit. Care 61, 73–75 (2021)

    Google Scholar 

  6. H. Su, M. Yang, C. Wan, L.-X. Yi, F. Tang, H.-Y. Zhu, F. Yi, H.-C. Yang, A.B. Fogo, X. Nie et al., Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in china. Kidney Int. 98, 219–227 (2020)

    Google Scholar 

  7. M.A. Gertz, R.A. Kyle, Hyperviscosity syndrome. J. Intensive Care Med. 10, 128–141 (1995)

    Google Scholar 

  8. S. Chien, S. Usami, R.J. Dellenback, M.I. Gregersen, Blood viscosity: influence of erythrocyte deformation. Science 157, 827–829 (1967)

    ADS  Google Scholar 

  9. S. Chien, S. Usami, R.J. Dellenback, M.I. Gregersen, Shear-dependent deformation of erythrocytes in rheology of human blood. Am. J. Physiol. 219, 136–142 (1970)

    Google Scholar 

  10. S. Chien, Shear dependence of effective cell volume as a determinant of blood viscosity. Science 168, 977–979 (1970)

    ADS  Google Scholar 

  11. C.L. Maier, A.D. Truong, S.C. Auld, D.M. Polly, C.-L. Tanksley, A. Duncan, COVID-19-associated hyperviscosity: a link between inflammation and thrombophilia? Lancet 395, 1758–1759 (2020)

    Google Scholar 

  12. A. Berzuini, C. Bianco, A.C. Migliorini, M. Maggioni, L. Valenti, D. Prati, Red blood cell morphology in patients with COVID-19-related anaemia. Blood Transfus. 19, 34 (2021)

    Google Scholar 

  13. E. Nader, C. Nougier, C. Boisson, S. Poutrel, J. Catella, F. Martin, J. Charvet, S. Girard, S. Havard-Guibert, M. Martin et al., Increased blood viscosity and red blood cell aggregation in patients with COVID-19. Am. J. Hematol. 97, 283–292 (2022)

    Google Scholar 

  14. K. Lee, M. Kinnunen, M.D. Khokhlova, E.V. Lyubin, A.V. Priezzhev, I. Meglinski, A.A. Fedyanin, Optical tweezers study of red blood cell aggregation and disaggregation in plasma and protein solutions. J. Biomed. Opt. 21, 035001 (2016)

    ADS  Google Scholar 

  15. R.L. Clark, Genesis of placental sequestration in malaria and possible targets for drugs for placental malaria. Birth Defects Res. 111, 569–583 (2019)

    Google Scholar 

  16. L.R. Languino, J. Plescia, A. Duperray, A.A. Brian, E.F. Plow, J.E. Geltosky, D.C. Altieri, Fibrinogen mediates leukocyte adhesion to vascular endothelium through an ICAM-1-dependent pathway. Cell 73, 1423–1434 (1993)

    Google Scholar 

  17. L. Nicolai, A. Leunig, S. Brambs, R. Kaiser, T. Weinberger, M. Weigand, M. Muenchhoff, J.C. Hellmuth, S. Ledderose, H. Schulz et al., Immunothrombotic dysregulation in COVID-19 pneumonia is associated with respiratory failure and coagulopathy. Circulation 142, 1176–1189 (2020)

    Google Scholar 

  18. A. Le Joncour, L. Biard, M. Vautier, H. Bugaut, A. Mekinian, G. Maalouf, M. Vieira, A.-G. Marcelin, M. Rosenzwajg, D. Klatzmann et al., Neutrophil-platelet and monocyte-platelet aggregates in COVID-19 patients. Thromb. Haemostasis 120, 1733–1735 (2020)

    Google Scholar 

  19. S. Chen, J. Zhu, J. Xue, X. Wang, P. Jing, L. Zhou, Y. Cui, T. Wang, X. Gong, S. Lu, M. Long, Numerical simulation of flow characteristics in a permeable liver sinusoid with leukocytes. Biophys. J. 121, 4666–4678 (2022)

    ADS  Google Scholar 

  20. H. Li, K. Sampani, X. Zheng, D. Papageorgiou, A. Yazdani, M. Bernabeu, G.E. Karniadakis, J. Sun, Predictive modelling of thrombus formation in diabetic retinal microaneurysms. R. Soc. Open Sci. 7, 201102 (2020)

    ADS  Google Scholar 

  21. X. Zheng, A. Yazdani, H. Li, J. Humphrey, G.E. Karniadakis, A three-dimensional phase-field model for multiscale modeling of thrombus biomechanics in blood vessels. PLOS Comput. Biol. 16, 1007709 (2020)

    ADS  Google Scholar 

  22. H. Li, Y. Deng, K. Sampani, S. Cai, Z. Li, J.K. Sun, G.E. Karniadakis, Computational investigation of blood cell transport in retinal microaneurysms. PLOS Comput. Biol. 18, 1009728 (2022)

    ADS  Google Scholar 

  23. L. Xiao, J. Chu, C. Lin, K. Zhang, S. Chen, L. Yang, Simulation of a tumor cell flowing through a symmetric bifurcated microvessel. Biomech. Model. Mechanobiol. 22, 297–308 (2023)

    Google Scholar 

  24. Y. Deng, D.P. Papageorgiou, X. Li, N. Perakakis, C.S. Mantzoros, M. Dao, G.E. Karniadakis, Quantifying fibrinogen-dependent aggregation of red blood cells in type 2 diabetes mellitus. Biophys. J. 119, 900–912 (2020)

    ADS  Google Scholar 

  25. E. Javadi, Y. Deng, G.E. Karniadakis, S. Jamali, In silico biophysics and hemorheology of blood hyperviscosity syndrome. Biophys. J. 120, 2723–2733 (2021)

    ADS  Google Scholar 

  26. E. Javadi, H. Li, A.D. Gallastegi, G.H. Frydman, S. Jamali, G.E. Karniadakis, Circulating cell clusters aggravate the hemorheological abnormalities in COVID-19. Biophys. J. 121, 3309–3319 (2022)

    ADS  Google Scholar 

  27. L. Li, S. Wang, K. Han, X. Qi, S. Ma, L. Li, J. Yin, D. Li, X. Li, J. Qian, Quantifying shear-induced margination and adhesion of platelets in microvascular blood flow. J. Mol. Biol. 435, 167824 (2023)

    Google Scholar 

  28. H. Li, Y. Deng, Z. Li, A. Dorken Gallastegi, C.S. Mantzoros, G.H. Frydman, G.E. Karniadakis, Multiphysics and multiscale modeling of microthrombosis in COVID-19. PLOS Comput. Biol. 18, 1009892 (2022)

    ADS  Google Scholar 

  29. I.V. Pivkin, G.E. Karniadakis, Accurate coarse-grained modeling of red blood cells. Phys. Rev. Lett. 101, 118105 (2008)

    ADS  Google Scholar 

  30. D.A. Fedosov, B. Caswell, G.E. Karniadakis, Systematic coarse-graining of spectrin-level red blood cell models. Comput. Methods Appl. Mech. Eng. 199, 1937–1948 (2010)

    MathSciNet  ADS  Google Scholar 

  31. Z. Peng, X. Li, I.V. Pivkin, M. Dao, G.E. Karniadakis, S. Suresh, Lipid bilayer and cytoskeletal interactions in a red blood cell. Proc. Natl. Acad. Sci. USA 110, 13356–13361 (2013)

    ADS  Google Scholar 

  32. S. Ma, S. Wang, X. Qi, K. Han, X. Jin, Z. Li, G. Hu, X. Li, Multiscale computational framework for predicting viscoelasticity of red blood cells in aging and mechanical fatigue. Comput. Methods Appl. Mech. Eng. 391, 114535 (2022)

    MathSciNet  ADS  Google Scholar 

  33. P. Hoogerbrugge, J. Koelman, Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 19, 155 (1992)

    ADS  Google Scholar 

  34. H. Lei, B. Caswell, G.E. Karniadakis, Direct construction of mesoscopic models from microscopic simulations. Phys. Rev. E 81, 026704 (2010)

    ADS  Google Scholar 

  35. Z. Li, X. Bian, B. Caswell, G.E. Karniadakis, Construction of dissipative particle dynamics models for complex fluids via the Mori-Zwanzig formulation. Soft Matter 10, 8659–8672 (2014)

    ADS  Google Scholar 

  36. M.L. Klein, W. Shinoda, Large-scale molecular dynamics simulations of self-assembling systems. Science 321, 798–800 (2008)

    ADS  Google Scholar 

  37. H. Li, G. Lykotrafitis, A coarse-grain molecular dynamics model for sickle hemoglobin fibers. J. Mech. Behav. Biomed. Mater. 4, 162–173 (2011)

    Google Scholar 

  38. L. Lu, H. Li, X. Bian, X. Li, G.E. Karniadakis, Mesoscopic adaptive resolution scheme toward understanding of interactions between sickle cell fibers. Biophys. J. 113, 48–59 (2017)

    ADS  Google Scholar 

  39. L. Lu, Y. Deng, X. Li, H. Li, G.E. Karniadakis, Understanding the twisted structure of amyloid fibrils via molecular simulations. J. Phys. Chem. B 122, 11302–11310 (2018)

    Google Scholar 

  40. Z. Adamczyk, J. Barbasz, M. Ciesla, Mechanisms of fibrinogen adsorption at solid substrates. Langmuir 27, 6868–6878 (2011)

    Google Scholar 

  41. X. Li, B. Caswell, G.E. Karniadakis, Effect of chain chirality on the self-assembly of sickle hemoglobin. Biophys. J. 103, 1130–1140 (2012)

    ADS  Google Scholar 

  42. E. Caspary, R. Kekwick, Some physicochemical properties of human fibrinogen. Biochem. J. 67, 41 (1957)

    Google Scholar 

  43. W.E. Fowler, H.P. Erickson, Trinodular structure of fibrinogen: confirmation by both shadowing and negative stain electron microscopy. J. Mol. Biol. 134, 241–249 (1979)

    Google Scholar 

  44. D.A. Fedosov, W. Pan, B. Caswell, G. Gompper, G.E. Karniadakis, Predicting human blood viscosity in silico. Proc. Natl. Acad. Sci. USA 108, 11772–11777 (2011)

    ADS  Google Scholar 

  45. M. Dembo, D. Torney, K. Saxman, D. Hammer, The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc. Natl. Acad. Sci. USA 234, 55–83 (1988)

    Google Scholar 

  46. D.A. Fedosov, B. Caswell, S. Suresh, G.E. Karniadakis, Quantifying the biophysical characteristics of Plasmodium-falciparum-parasitized red blood cells in microcirculation. Proc. Natl. Acad. Sci. USA 108, 35–39 (2011)

    ADS  Google Scholar 

  47. J. Kim, N.E. Hudson, T.A. Springer, Force-induced on-rate switching and modulation by mutations in gain-of-function von willebrand diseases. Proc. Natl. Acad. Sci. USA 112, 4648–4653 (2015)

    ADS  Google Scholar 

  48. A. Yazdani, Y. Deng, H. Li, E. Javadi, Z. Li, S. Jamali, C. Lin, J.D. Humphrey, C.S. Mantzoros, G.E. Karniadakis, Integrating blood cell mechanics, platelet adhesive dynamics and coagulation cascade for modelling thrombus formation in normal and diabetic blood. J. R. Soc. Interface 18, 20200834 (2021)

    Google Scholar 

  49. A.D. Truong, S.C. Auld, N.A. Barker, S. Friend, A.T. Wynn, J. Cobb, R.M. Sniecinski, C.-L. Tanksley, D.M. Polly, M. Gaddh et al., Therapeutic plasma exchange for COVID-19-associated hyperviscosity. Transfusion 61, 1029–1034 (2021)

    Google Scholar 

  50. M.D. Berger, A.D. Heini, K. Seipel, B. Mueller, A. Angelillo-Scherrer, T. Pabst, Increased fibrinogen levels at diagnosis are associated with adverse outcome in patients with acute myeloid leukemia. Hematol. Oncol. 35, 789–796 (2017)

    Google Scholar 

  51. J. Backer, C. Lowe, H. Hoefsloot, P. Iedema, Poiseuille flow to measure the viscosity of particle model fluids. J. Chem Phys. 122, 154503 (2005)

    ADS  Google Scholar 

  52. H. Li, G. Lykotrafitis, Two-component coarse-grained molecular-dynamics model for the human erythrocyte membrane. Biophys. J. 102, 75–84 (2012)

    ADS  Google Scholar 

  53. H. Li, G. Lykotrafitis, Erythrocyte membrane model with explicit description of the lipid bilayer and the spectrin network. Biophys. J. 107, 642–653 (2014)

    ADS  Google Scholar 

  54. Y. Zhang, C. Huang, S. Kim, M. Golkaram, M.W.A. Dixon, L. Tilley, J. Li, S. Zhang, S. Suresh, Multiple stiffening effects of nanoscale knobs on human red blood cells infected with Plasmodium falciparum malaria parasite. Proc. Natl. Acad. Sci. USA 112, 6068–6073 (2015)

    ADS  Google Scholar 

  55. H. Li, Y. Zhang, V. Ha, G. Lykotrafitis, Modeling of band-3 protein diffusion in the normal and defective red blood cell membrane. Soft Matter 12, 3643–3653 (2016)

    ADS  Google Scholar 

  56. H. Li, J. Yang, T.T. Chu, R. Naidu, L. Lu, R. Chandramohanadas, M. Dao, G.E. Karniadakis, Cytoskeleton remodeling induces membrane stiffness and stability changes of maturing reticulocytes. Biophys. J. 114, 2014–2023 (2018)

    ADS  Google Scholar 

  57. Y. Deng, D.P. Papageorgiou, H.-Y. Chang, S.Z. Abidi, X. Li, M. Dao, G.E. Karniadakis, Quantifying shear-induced deformation and detachment of individual adherent sickle red blood cells. Biophys. J. 116, 360–371 (2019)

    ADS  Google Scholar 

  58. Y. Huo, G.S. Kassab, The scaling of blood flow resistance: from a single vessel to the entire distal tree. Biophys. J. 96, 339–346 (2009)

    ADS  Google Scholar 

  59. G.S. Kassab, Scaling laws of vascular trees: of form and function. Am. J. Physiol. Heart Circ. Physiol. 290, 894–903 (2006)

    Google Scholar 

  60. D. Xiu, G.E. Karniadakis, Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187, 137–167 (2003)

    MathSciNet  ADS  Google Scholar 

  61. T.-R. Lee, M.S. Greene, Z. Jiang, A.M. Kopacz, P. Decuzzi, W. Chen, W.K. Liu, Quantifying uncertainties in the microvascular transport of nanoparticles. Biomech. Model. Mechanobiol. 13, 515–526 (2014)

    Google Scholar 

  62. S. Sankaran, H.J. Kim, G. Choi, C.A. Taylor, Uncertainty quantification in coronary blood flow simulations: impact of geometry, boundary conditions and blood viscosity. J. Biomech. 49, 2540–2547 (2016)

    Google Scholar 

  63. G. Bertaglia, V. Caleffi, L. Pareschi, A. Valiani, Uncertainty quantification of viscoelastic parameters in arterial hemodynamics with the a-FSI blood flow model. J. Comput. Phys. 430, 110102 (2021)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (no. LY22A020004), and the Fundamental Research Funds for the Central Universities (no. 226-2022-00125). Simulations were conducted at the Beijing Super Cloud Computing Center (BLSC).

Author information

Authors and Affiliations

Authors

Contributions

KH: formal analysis, investigation, methodology, validation, writing—original draft, writing—review and editing, visualization. WZ: formal analysis, writing— review and editing. SM: formal analysis, methodology, writing—review and editing. SW: formal analysis, methodology, writing—review and editing. XQ: formal analysis, methodology, writing—review and editing. LG: conceptualization, supervision, writing—review and editing. XL: conceptualization, formal analysis, supervision, writing—original draft, writing—review and editing.

Corresponding authors

Correspondence to Ling Guo or Xuejin Li.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1256 kb)

Supplementary file2 (MP4 7179 kb)

Supplementary file3 (MP4 6130 kb)

Supplementary file4 (MP4 4895 kb)

Supplementary file5 (MP4 5544 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, K., Zhou, W., Ma, S. et al. A computational study of fibrinogen-induced alteration in microvascular blood flow in COVID-19. Eur. Phys. J. Spec. Top. 232, 2761–2772 (2023). https://doi.org/10.1140/epjs/s11734-023-00901-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00901-w

Navigation