Skip to main content
Log in

Radiological assessment of carbonated spring waters in regard to the lithological characteristics of Harghita county, Romania

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The present study performs an extensive survey of the radioactive properties of carbonated spring waters from the post-volcanic area of Harghita county, Romania. Gross alpha activities ranged from 0.018 to 1.941 Bq/L, with  ~ 46% of the samples presenting values over the parametric value established by the Romanian law, while only  ~ 10.5% were above of that established by WHO Guidelines. Gross beta activities ranged between 0.04 and 1.245 Bq/L, with one value exceeding the guidance level of both regulations. 222Rn activities ranged between 0.6 and 399.6 Bq/L, while 226Ra activities were in the 21–694 mBq/L interval. 228Ra-specific activities ranged between 19 and 1151 mBq/L, and 238U-specific activities were found to be between 11 and 113 mBq/L. The concentrations for 210Po and 210Pb ranged from 11 to 90 mBq/L, respectively 12 and 87 mBq/L. The values were generally low, with only sporadic occurrences of higher activities. The annual effective doses presented generally low values, with 14 samples exceeding the recommended individual dose criterion (IDC) of 0.1 mSv/yr, XRF analyses of trace elements revealed a general presence of high Fe content, while Ag, Cd, Co, Cr, Hg and Tl were under the detection limits. The specific activities obtained were above those reported in other regions of Romania. This may be explained by the presence of the Tulgheș litho-group (hosting several U mineralization) which, along with the presence of fractures, and absorption processes on iron hydroxide, may enhance the radionuclide content present within the investigated carbonated spring waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. T.M. Missimer, C. Teaf, R.G. Maliva, A. Danley-Thomson, D. Covert, M. Hegy, Natural radiation in the rocks, soils, and groundwater of southern Florida with a discussion on potential health impacts. Int. J. Environ. Res. Public Health 16(10), 1793 (2019). https://doi.org/10.3390/Ijerph16101793

    Article  Google Scholar 

  2. J. Masarik, Radioactivity in the environment, chapter 1: origin and distribution of radionuclides in the continental environment, Vol. 16, pp 1–25. (2009) Doi: https://doi.org/10.1016/S1569-4860(09)01601-5

  3. R. Evans, C. Goodman, Radioactivity of rocks. Geol. Soc. Am. Bull. 52(4), 459–490 (1941). https://doi.org/10.1130/Gsab-52-459

    Article  ADS  Google Scholar 

  4. A.M. Tye, A.E. Milodowski, & P.L. Smedley, Distribution of natural radioactivity in the environment. British Geological Survey Internal Report, OR/17/001 (2017)

  5. N. Bagdassarov, Radioactive properties of rocks. Fundamentals of rock physics, 505–540. (2021). Doi: https://doi.org/10.1017/9781108380713.013

  6. F. Cfarku, G. Xhixha, E. Bylyku, P. Zdruli, F. Mantovani, F. Përpunja, I. Callegari, E. Guastaldi, M. XhixhaKaçeli, H. Thoma, A preliminary study of gross alpha/beta activity concentrations in drinking waters from albania. J. Radioanal. Nucl. Chem. 301(2), 435–442 (2014). https://doi.org/10.1007/S10967-014-3142-X

    Article  Google Scholar 

  7. UNSCEAR. Report: Sources, Effects And Risks Of Ionizing Radiation. New York, NY, United Nations. United Nations Scientific Committee On The Effects Of Atomic Radiation (2000) (http://www.unscear.org/unscear/en/publications/2000_1.Html)

  8. World Health Organization (Who). Guidelines for drinking-water quality 4ed Ch. 9, 203–218, Who Publications, Geneva (2017).

  9. International Atomic Energy Agency (IAEA) (Ed.). Criteria for radionuclide activity concentrations for food and drinking water. (2016).

  10. European Commission (EC) Council Directive 98/83/EC Of 3 November 1998 On the quality of water intended for human consumption

  11. Law No. 301 Of November 27, 2015 On The Establishment Of Requirements For The Public Health Safety With Regard To Radioactive Substances In Drinking Water Issued By The Romanian Parliament, Published In The Official Gazette No. 904 Of December 7, 2015.

  12. J. Bányai, The mineral waters from Szeklerland. Kül. Erdélyi Múzeum, XXXIX, 13 (In Hungarian) (1934).

  13. A. Pricajan, Apele Minerale Și Termale Din România. Ed. Tehnica, București (In Romanian). (1972)

  14. B.-M. Kis, C. Baciu, K.N. Ladislau, A statistical approach to the mineral waters of transylvanian basin-eastern carpathians boundary. Stud. Ubb Ambientum, LVIII 1–2, 55–63 (2013)

    Google Scholar 

  15. A. Szakács, Post-volcanic phenomena in the east Carpathians, in Natural heritage from east to west. (Springer, Berlin, 2009), pp.87–93. https://doi.org/10.1007/978-3-642-01577-9_10

    Chapter  Google Scholar 

  16. I. Berszán, Cs. Jánosi, K. Jánosi, F. Kristály, É. Péter, S. Szakáll, G. Ütő. Székelyföld Ásványvizei, Polgár-Társ Alapítvány, Csíkszereda, 239. (In Hungarian) (2009)

  17. A. Feru, Guide To Natural Mineral Waters, Societatea Națională A Apelor Minerale, București, 105. (In Romanian) (2012)

  18. T. Bandrabur, D. Slăvoacă, R. Ianc, Perspective De Valorificare A Apelor Minerale Din Zona Balvanyoș-Turia-Iaidon (Probabilities For The Use Of Mineral Waters In The Balvanyoș-Turia-Iaidon Area). Studii Technice Şi Economice, E 14, 41–62 (1984). ((In Romanian))

    Google Scholar 

  19. E.M. Baradács, Hévizek És Ásványvizek Radon- És Rádiumtartalma (Radon and radium content of thermal and mineral waters). Ph.D. Thesis, University Of Debrecen, Faculty Of Sciences (2002).

  20. M. Moldovan, V. Benea, D.C. Ni, B. Papp, B.D. Burghele, N. Bican-BriAn, C. Cosma, Radon and radium concentration in water from north-west of romania and the estimated doses. Radiat. Prot. Dosimetry. 162(1–2), 96–100 (2014). https://doi.org/10.1093/Rpd/Ncu230

    Article  Google Scholar 

  21. M. Moldovan, C. Cosma, Z. Horvath, T. Sferle, Radon and radium concentrations in water from Transylvania and the assessment of the resulting dose. annals of the west university of Timisoara. Phys. Ser. Timisoara 54, 69–76 (2010)

    Google Scholar 

  22. R.C. Begy, S. Dreve, A.T. Gabor, O.A. Rusu, C. Cosma, Measurements of radium content in some spring waters from Romania. Environ. Eng. Manag. J. 11(2), 247–251 (2012). https://doi.org/10.30638/Eemj.2012.031

    Article  Google Scholar 

  23. G.Z. Földvary, Geology Of The Carpathian Region. World Scientific Publishing Company. P. 223 (1988).

  24. G. Alexandrescu, G. Mureşan, S. Peltz, & M. Săndulescu, Geological map of Romania, 1:200.000, L-35-VIII, Topliţa (12). Bucureşti, Inst. Geol. Geofiz. (1968)

  25. I. Balintoni, Geotectonics of the metamorphic terranes In Romania, Ed. Carpatica. (1997).

  26. I. Balintoni, I. Gheuca, A. Voda, Alpine and hercynian overthrust napps from central and southern areas of the east carpathians crystalline mesozoic zone. Anuarul Inst. De Geol. Şi Geofizică 60, 15–22 (1983)

    Google Scholar 

  27. D. Gallhofer, A.V. Quadt, I. Peytcheva, S.M. Schmid, C.A. Heinrich, Tectonic, magmatic, and metallogenic evolution of the late cretaceous arc in the carpathian-balkan orogen. Tectonics 34(9), 1813–1836 (2015). https://doi.org/10.1002/2015tc003834

    Article  ADS  Google Scholar 

  28. F. Neubauer, Contrasting late cretaceous with neogene ore provinces in the Alpine–Balkan–Carpathian–Dinaride collision belt. In: D. J. Blundell, F. Neubauer, & A. Von Quadt (Eds.), The Timing And Location Of Major Ore Deposits In An Evolving Orogen, Special Publications 204 (Pp. 81–102). Geological Society. (2022).

  29. G. Murgeanu, I. Dumitrescu, O. Mirauta, M. Săndulescu, M. Ştefănescu, & T. Bandrabur, Geological Map Of Romania, 1:200.000. L-35-XV, Bacău (21). Bucureşti, Inst. Geol. Geofiz. (1968).

  30. F. Marinescu, & A. Popescu, Geological Map Of Romania, 1:200.000, L-35-XIII, Târgu Mureş (19). Bucureşti, Inst. Geol. Geofiz. (1968).

  31. M. Săndulescu, A. Vasilescu, A. Popescu, & M. Mureşan, Geological Map Of Romania, 1:200.000. L-35-XIV, Odorhei (20). Bucureşti, Inst. Geol. Geofiz. (1968).

  32. Z. Pécskay, O. Edelstein, I. Seghedi, A. Szakács, M. Kovács, M. Crihon, A. Bernard, K-Ar datings of neogene-quaternary calcalkaline volcanic rocks in Romania. Acta Voulcan. 7(2), 53–61 (1995)

    Google Scholar 

  33. Z. Pécskay, J. Lexa, A. Szakács, I. Seghedi, K. Balogh, V. Konečný, T. Zelenka, M. Kovacs, T. Póka, A. Fülöp, E. Márton, C. Panaiotu, V. Cvetković, Geochronology of neogene magmatism in the carpathian arc and intra-carpathian area. Geol. Carpath. 57(6), 511–533 (2006)

    Google Scholar 

  34. I. Seghedi, H. Downes, O. Vaselli, A. Szakács, K. Balogh, Z. Pécskay, Post-collisional tertiary-quaternary mafic alkalic magmatism in the carpathian-pannonian region: a review. Tectonophysics 393(1–4), 43–62 (2004). https://doi.org/10.1016/J.Tecto.2004.07.051

    Article  ADS  Google Scholar 

  35. I. Seghedi, L. Maţenco, H. Downes, P.R.D. Mason, A. Szakács, Z. Pécskay, Tectonic significance of changes in post-subduction pliocene-quaternary magmatism in the south east part of the carpathian-pannonian region. Tectonophysics 502(1–2), 146–157 (2011). https://doi.org/10.1016/J.Tecto.2009.12.003

    Article  ADS  Google Scholar 

  36. V. Mutihac, Structura Geologică A Teritoriului României (The geological structure of the territory of Romania). Editura Tehnică. (in Romanian) (1990).

  37. J. Suomela, Method For determination of radon - 222 in water by liquid scintillation counting. Ssi-Rapport 93–13, Issn: 0282–4434, https://inis.iaea.org/collection/nclcollectionstore/_public/25/011/25011271.Pdf. (1993).

  38. F.W. Leaney, A.L. Herczeg, A rapid field extraction method for determination of radon-222 in natural waters by liquid scintillation counting. Limnol Oceanogr Methods 4(7), 254–259 (2006). https://doi.org/10.4319/Lom.2006.4.254

    Article  Google Scholar 

  39. R. Begy, C. Savin, D. Süle, M. Nuhanovic, E. Giagias, T. Kovács, Radiological investigation of natural carbonated spring waters from eastern Carpathians, Romania. J. Radioanal. Nucl. Chem. 331(3), 1439–1450 (2022). https://doi.org/10.1007/S10967-022-08195-3

    Article  Google Scholar 

  40. V. Jobbágy, N. Kávási, J. Somlai, B. Máté, T. Kovács, Radiochemical characterization of Spring Waters in Balaton Upland, Hungary, estimation of radiation dose to members of public. Microchem. J. 94(2), 159–165 (2010). https://doi.org/10.1016/j.microc.2009.10.015

    Article  Google Scholar 

  41. L. Benedik, L. Rovan, H. Klemenčič, I. Gantar, H. Prosen, Natural radioactivity in tap waters from the private wells in the surroundings of the former Žirovski Vrh uranium mine and the age-dependent dose assessment. Environ. Sci. Pollut. Res. 22(16), 12062–12072 (2015). https://doi.org/10.1007/S11356-015-4481-Z

    Article  Google Scholar 

  42. V. Duong, T. Nguyen, M. Hegedűs, E. Tóth-Bodrogi, ;Kovács, T., Assessment of 232th, 226RA, 137Cs, and 40 K concentrations and annual effective dose due to the consumption of vietnamese fresh milk. J. Radioanal. Nucl. Chem. 328(3), 1399–1404 (2021). https://doi.org/10.1007/s10967-021-07643-w

    Article  Google Scholar 

  43. G. Jia, G. Torri, R. Ocone, A. Di Lullo, A. De Angelis, R. Boschetto, Determination of thorium isotopes in mineral and environmental water and soil samples by α-spectrometry and the fate of thorium in water. Appl. Radiat. Isotop. 66(10), 1478–1487 (2008). https://doi.org/10.1016/J.Apradiso.2008.03.015

    Article  Google Scholar 

  44. CNCAN (National Commission For The Control Of Nuclear Activities) Fundamental Standard Of 24.01.2000

  45. V. Pintilie, A. Ene, L. Georgescu, L. Moraru, C. Iticescu, Measurements of gross alpha and beta activity in drinking water from Galati region Romania. Romanian Rep. Phys. 68, 1208–1220 (2016)

    Google Scholar 

  46. T. Laszlo, M. Bragea, A. Cucu, Radioactivity monitoring of drinking water (National Synthesis (Unpublished), Romania, 2014)

    Google Scholar 

  47. ICRP. Nuclear Decay Data For Dosimetric Calculations. ICRP Publication 107. Ann. ICRP 38 (3) (2008).

  48. E.E. Bowman, M.N. Ducea, L. Petrescu, Late cretaceous age of the Crucea uranium ore deposit, east Carpathians Romania. Res. Geochem. 1, 100002 (2020). https://doi.org/10.1016/J.Ringeo.2020.100002

    Article  Google Scholar 

  49. M.C. Duff, J.U. Coughlin, D.B. Hunter, Uranium co-precipitation with iron oxide minerals. Geochim. Cosmochim. Acta 66(20), 3533–3547 (2002). https://doi.org/10.1016/S0016-7037(02)00953-5

    Article  ADS  Google Scholar 

  50. Z. Szabo, V. Depaul, J. Fischer, T. Kraemer, E. Jacobsen, Occurrence and geochemistry of radium in water from principal drinking-water aquifer systems of the United States. Appl. Geochem. 27(3), 729–752 (2012). https://doi.org/10.1016/J.Apgeochem.2011.11.002

    Article  ADS  Google Scholar 

  51. P. Vesterbacka, T. Turtiainen, S. Heinävaara, H. Arvela, Activity concentrations of 226Ra and 228ra in drilled well water in Finland. Radiat. Prot. Dosimetry. 121(4), 406–412 (2006). https://doi.org/10.1093/Rpd/Ncl067

    Article  Google Scholar 

  52. D. Bonotto, Gross alpha/beta radioactivity and radiation dose in thermal and non-thermal spas groundwaters. Heliyon 5(5), E01563 (2019). https://doi.org/10.1016/J.Heliyon.2019.E01563

    Article  Google Scholar 

  53. D. Brenner, R. Doll, D. Goodhead, E. Hall, C. Land, J. Little et al., Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc. Natl. Acad. Sci. 100(24), 13761–13766 (2003). https://doi.org/10.1073/Pnas.2235592100

    Article  ADS  Google Scholar 

  54. C.Reimann, & M. Birke, (Eds.). Geochemistry of european bottled water. Borntraeger Science Publishers. (2010).

  55. Commission Directive 2003/40/EC Of 16 May 2003 Establishing The List, Concentration Limits And Labelling Requirements For The Constituents Of Natural Mineral Waters And The Conditions For Using Ozone-Enriched Air For The Treatment Of Natural Mineral Waters And Spring Waters

  56. C. Reimann, M. Birke, P. Filzmoser, Bottled drinking water: water contamination from bottle materials (Glass, Hard PET, Soft PET), the influence of colour and acidification. Appl. Geochem. 25(7), 1030–1046 (2010)

    Article  ADS  Google Scholar 

  57. D.C. Papp, E. Niţoi, Isotopic composition and origin of mineral and geothermal waters from Tuşnad Băi Spa, Harghita Mountains Romania. J. Geochem. Explor. 89(1–3), 314–317 (2006). https://doi.org/10.1016/J.Gexplo.2005.12.008

    Article  Google Scholar 

  58. A. Tudorache, C. Marin, I. Badea, L. Vlădescu, Determination Of arsenic content of some Romanian natural mineral groundwaters. Environ Monit Assess 173(1), 79–89 (2011). https://doi.org/10.1007/S10661-010-1372-0

    Article  Google Scholar 

  59. I. Máthé, A. Táncsics, E. György, Z. Pohner, P. Vladár, A. J. Székely, & K. Márialigeti, Investigation Of Mineral Water Springs Of Miercurea Ciuc (Csíkszereda) Region (Romania) With Cultivation-Dependent Microbiological Methods [Research Support, Non-U.S. Gov't]. Acta Microbiol Immunol Hung, 57(2), 109–122 (2010).

  60. T. Dippong, M.A. Hoaghia, C. Mihali, E. Cical, M. Calugaru, Human health risk assessment of some bottled waters from Romania. Environ Pollut 267, 115409 (2020). https://doi.org/10.1016/J.Envpol.2020.115409

    Article  Google Scholar 

  61. S. Peltz, M. Peltz, & N. Botar, Observații Litogeochimice Și Implicații Metalogenetice În Aria Vulcanică Găineasa (Craterul Seaca-Tătarca, Munții Gurghiu) (Lithogeochemical Observations And Metallogenetic Implications In The Găineasa Volcanic Area (Seaca-Tătarca Crater, Gurghiu Mountains). Dări De Seamă Ale Institutului De Geologie Şi Geofizică, LXVII/2, 85–112. (in Romanian) (1982).

  62. S. Peltz, C. Stanciu, Z. Balla, A. Gheorghiu, I. Nițulescu, V. Pomârleanu, C. Udrescu, & Ș. Anastase, Date Noi Privind Mineralizația Hidrotermală De La Sînceni (Munții Călimani De Sud) (New Data On Hydrothermal Mineralization From Sînceni (South Călimani Mountains)). Dări De Seamă Ale Institutului De Geologie Şi Geofizică, LXVII/2, 113–158. (in Romanian) (1982).

  63. A. Tudorache, C. Marin, I. Badea, L. Vlădescu, Barium concentrations and speciation in mineral natural waters of central Romania. Environ Monit Assess 165(1), 113–123 (2010). https://doi.org/10.1007/S10661-009-0931-8

    Article  Google Scholar 

  64. A. Vodă, & D. Vodă, Minereurile Singenetice De Baritină De La Holdița-Broșteni (Carpații Orientali) (Syngenetic Barite Ores From Holdița-Broșteni (Eastern Carpathians)). Dări De Seamă Ale Institutului De Geologie Şi Geofizică, LXVII/2, 233–246 (in Romanian) (1982).

Download references

Acknowledgements

The authors acknowledge the financial support from Harghita Mountains Intercommunity Development Association, Romania. The funding source had no involvement in the study design, collection, analysis and interpretation of data, writing of the report or in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Contributions

CFS—methodology, data curation, writing— original draft. FLF—data curation, formal analysis. CT—methodology, data curation. R-CB—conceptualization, methodology, validation, supervision, data curation.

Corresponding author

Correspondence to Robert-Cs. Begy.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savin, C.F., Forray, F.L., Tănăselia, C. et al. Radiological assessment of carbonated spring waters in regard to the lithological characteristics of Harghita county, Romania. Eur. Phys. J. Spec. Top. 232, 1563–1581 (2023). https://doi.org/10.1140/epjs/s11734-023-00879-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00879-5

Navigation