Skip to main content
Log in

Fractal representation of tsunami waves: a generalized geophysical gardner equation

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Dynamical properties of tsunami waves for the generalized geophysical Gardner equation (GGGE) are investigated through phase plane analysis. Using Galilean transformation, the GGGE is transformed to a conservative Hamiltonian system. Existence of linear and supernonlinear tsunami waves is reported through phase portrait and time series analysis. A collection of necessary conditions is obtained for the existence of such kinds of waves for the GGGE. Analytical forms of various types of tsunami waves for GGGE are presented and effects of physical parameters on such waves are discussed. The Coriolis parameter (\(\omega _0\)), and velocity (v) of traveling waves have consequential effects on the nonlinear and supernonlinear tsunami waves. Perturbed tsunami waves are studied using phase projections and time series plots considering different values of the Coriolis parameter (\(\omega _0\)). Perturbed tsunami waves show quasiperiodic and chaotic nature based on suitable values of the Coriolis parameter (\(\omega _0\)). Further, the phase portraits and time series plots of the perturbed tsunami waves are reconstructed using the fractal interpolation technique to manifest their hidden self-similar nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

Our manuscript has no associated data.

References

  1. J. Lighthill, Waves in Fluids, 2nd edn. (Cambridge University Press, Cambridge, 2001)

    MATH  Google Scholar 

  2. A. Geyer, R. Quirchmayr, Shallow water equations for equatorial tsunami waves. Philos. Trans. R. Soc. A 376, 20170100 (2017). https://doi.org/10.1098/rsta.2017.0100

  3. A. Constantin, R.S. Johnson, On the non-dimensionalisation, scaling and resulting interpretation of the classical governing equations for water waves. J. Nonlinear Math. Phys. 15, 58–73 (2008). https://doi.org/10.2991/jnmp.2008.15.s2.5

  4. D.J. Korteweg, G. de Vries, XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves 39, 422-443 (1895). https://doi.org/10.1080/14786449508620739

  5. S. Banerjee, A. Saha, Nonlinear dynamics and applications. Springer (2022). https://doi.org/10.1007/978-3-030-99792-2

  6. A.-M. Wazwaz, A two-mode modified KdV equation with multiple soliton solutions. Appl. Math. Lett. 70, 1–6 (2017). https://doi.org/10.1016/j.aml.2017.02.015

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Karunakar, S. Chakraverty, Effect of Coriolis constant on geophysical Korteweg-de Vries equation. J. Ocean Eng. Sci. 4(2), 113–121 (2019). https://doi.org/10.1016/j.joes.2019.02.002

  8. R. Stuhlmeier, KdV theory and the Chilean tsunami of 1960. Discret. continous Dyn. Syst. Ser. B 12, 623–632 (2009). https://doi.org/10.3934/dcdsb.2009.12.623

    Article  MathSciNet  MATH  Google Scholar 

  9. J.T. Kirby, F. Shi, B. Tehranirad, J.C. Harris, S.T. Grilli, Dispersive tsunami waves in the ocean: model equations and sensitivity to dispersion and Coriolis effects. Ocean Model. 62, 39–55 (2013). https://doi.org/10.1016/j.ocemod.2012.11.009

  10. A. Constantin, D. Henry, Solitons and Tsunamis. Z. Naturforsch. 64a, 65-68 (2009)

  11. A. Constantin, On the relevance of soliton theory to tsunami modelling. Wave Mot. 46, 420–426 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. A.R. Alharbi, M.B. Almatrafi, Exact solitary wave and numerical solutions for geophysical KdV equation. J. King Saud Univ. Sci. 34(6), 102087 (2022)

    Article  Google Scholar 

  13. S. Naowarat, S. Saifullah, S. Ahmad, M. De la Sen, Periodic. Singular and Dark Solitons of a Generalized Geophysical KdV Equation by Using the Tanh-Coth Method, Symmetry 15, 135 (2023)

  14. A.E. Dubinov, D.Y. Kolotkov, Ion-acoustic supersolitons in plasma. Plasma Phys. Rep. 38, 909 (2012)

    Article  ADS  Google Scholar 

  15. A. Saha, S. Banerjee, Dynamical systems and nonlinear waves in plasmas (CRC Press, 2021)

  16. M. Lakshmanan, S. Rajasekar, Nonlinear dynamics (Springer, Heidelberg, 2003)

    Book  MATH  Google Scholar 

  17. S.S. Mohanrasu, K. Udhayakumar, T.M.C. Priyanka, A. Gowrisankar, S. Banerjee, R. Rakkiyappan, Event-triggered impulsive controller design for synchronization of delayed chaotic neural networks and its fractal reconstruction: an application to image encryption. Appl. Math. Model. 115, 490–512 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  18. N.A.A. Fataf, A. Gowrisankar, S. Banerjee, In search of self-similar chaotic attractors based on fractal function with variable scaling approximately. Phys. Scr. 95, 075206 (2020)

    Article  ADS  Google Scholar 

  19. M.F. Barnsley, Fractal functions and interpolation. Construct. approx. 2(1), 303–329 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Banerjee, D. Easwaramoorthy, A. Gowrisankar, Fractal functions, dimensions and signal analysis (Springer, Cham, 2021)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

All authors are thankful to the reviewers for their constructive and invaluable suggestions for improving the quality of the manuscript. Asit Saha is thankful to SMIT (SMU) for providing research funding (Ref. Nos. 6100/ SMIT/ R &D/ Project/ 26/ 2019).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Asit Saha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Framework of Fractals in Data Analysis: Theory and Interpretation. Guest editors: Santo Banerjee, A. Gowrisankar.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, A., Gowrisankar, A., He, S. et al. Fractal representation of tsunami waves: a generalized geophysical gardner equation. Eur. Phys. J. Spec. Top. 232, 979–990 (2023). https://doi.org/10.1140/epjs/s11734-023-00861-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00861-1

Navigation