Skip to main content

Advertisement

Log in

Bright-to-dark-to-bright photoisomerisation in a forked (phenylene ethynylene) dendrimer prototype and its building blocks: a new mechanistic shortcut for excitation-energy transfer?

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Dendrimers made of oligo(phenylene ethynylene) building blocks are highly organised two-dimensional macromolecules that have raised much interest for their potential use as artificial light-harvesting antennae. Excitation-energy transfer is assumed to occur from the periphery to the core via a tree-shaped graph connecting a pair of donors on each acceptor. The received photophysical mechanism involves a converging cascade of crossings among bright electronic states foremost mediated by rigid acetylenic stretching modes. On the other hand, competition with in-plane trans-bending motions has been detected experimentally in oligomers and confirmed by computations in larger species, thus suggesting the additional involvement of dark electronic states acting as intermediates. In the present work, we show that this secondary process represents an alternative pathway that may not be detrimental and could even be viewed as a mechanistic shortcut.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. C. Weder, G. Voskerician, Electronic properties of PAEs, in Poly(arylene etynylene)s: From Synthesis to Application. Advances in Polymer Science, ed. by C. Weder (Springer, Berlin, Heidelberg, 2005), pp. 209–248 https://doi.org/10.1007/b101379

  2. A. Bar-Haim, J. Klafter, R. Kopelman, Dendrimers as controlled artificial energy antennae. J. Am. Chem. Soc. 119, 6197–6198 (1997). https://doi.org/10.1021/ja970972f

    Article  Google Scholar 

  3. D. Astruc, E. Boisselier, C. Ornelas, Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem. Rev. 110, 1857–1959 (2010). https://doi.org/10.1021/cr900327d

  4. R. Kopelman, M. Shortreed, Z.-Y. Shi, W. Tan, Z. Xu, J.S. Moore, A. Bar-Haim, J. Klafter, Spectroscopic evidence for excitonic localization in fractal antenna supermolecules. Phys. Rev. Lett. 78, 1239–1242 (1997). https://doi.org/10.1103/PhysRevLett.78.1239

    Article  ADS  Google Scholar 

  5. M.R. Shortreed, S.F. Swallen, Z.-Y. Shi, W. Tan, Z. Xu, C. Devadoss, J.S. Moore, R. Kopelman, Directed energy transfer funnels in dendrimeric antenna supermolecules. J. Phys. Chem. B 101, 6318–6322 (1997). https://doi.org/10.1021/jp9705986

    Article  Google Scholar 

  6. V.D. Kleiman, J.S. Melinger, D. McMorrow, Ultrafast dynamics of electronic excitations in a light—harvesting phenylacetylene dendrimer. J. Phys. Chem. B 105, 5595–5598 (2001). https://doi.org/10.1021/jp010208m

    Article  Google Scholar 

  7. E. Atas, Z. Peng, V.D. Kleiman, Energy transfer in unsymmetrical phenylene ethynylene dendrimers. J. Phys. Chem. B 109, 13553–13560 (2005). https://doi.org/10.1021/jp051488z

    Article  Google Scholar 

  8. J.L. Palma, E. Atas, L. Hardison, T.B. Marder, J.C. Collings, A. Beeby, J.S. Melinger, J.L. Krause, V.D. Kleiman, A.E. Roitberg, Electronic spectra of the nanostar dendrimer: theory and experiment. J. Phys. Chem. C 114, 20702–20712 (2010). https://doi.org/10.1021/jp1062918

    Article  Google Scholar 

  9. J. Huang, L. Du, D. Hu, Z. Lan, Theoretical analysis of excited states and energy transfer mechanism in conjugated dendrimers. J. Comput. Chem. 36, 151–163 (2015). https://doi.org/10.1002/jcc.23778

  10. V.M. Freixas, D. Ondarse-Alvarez, S. Tretiak, D.V. Makhov, D.V. Shalashilin, S. Fernandez-Alberti, Photoinduced non-adiabatic energy transfer pathways in dendrimer building blocks. J. Chem. Phys. 150, 124301 (2019). https://doi.org/10.1063/1.5086680

    Article  ADS  Google Scholar 

  11. C. Azarias, L. Cupellini, A. Belhboub, B. Mennucci, D. Jacquemin, Modelling excitation energy transfer in covalently linked molecular dyads containing a BODIPY unit and a macrocycle. Phys. Chem. Chem. Phys. 20, 1993–2008 (2018). https://doi.org/10.1039/C7CP06814J

    Article  Google Scholar 

  12. S. Tomasi, I. Kassal, Classification of coherent enhancements of light-harvesting processes. J. Phys. Chem. Lett. 11, 2348–2355 (2020). https://doi.org/10.1021/acs.jpclett.9b03490

    Article  Google Scholar 

  13. E.K.L. Ho, B. Lasorne, Diabatic pseudofragmentation and nonadiabatic excitation-energy transfer in meta-substituted dendrimer building blocks. Comput Theoretical Chem 1156, 25–36 (2019). https://doi.org/10.1016/j.comptc.2019.03.013

    Article  Google Scholar 

  14. Y. Hirata, T. Okada, N.T. Mataga, Picosecond time-resolved absorption spectrum measurements of the higher excited singlet state of diphenylacetylene in the solution phase. J. Phys. Chem. 96, 6559–6563 (1992). https://doi.org/10.1021/j100195a011

    Article  Google Scholar 

  15. M.Z. Zgierski, E.C. Lim, Nature of the ‘dark’ state in diphenylacetylene and related molecules: state switch from the linear ππ* state to the bent πσ* state. Chem. Phys. Lett. 387, 352–355 (2004). https://doi.org/10.1016/j.cplett.2004.02.029

    Article  ADS  Google Scholar 

  16. J. Saltiel, V.K.R. Kumar, Photophysics of diphenylacetylene: light from the-dark state. J. Phys. Chem. A 116, 10548–10558 (2012). https://doi.org/10.1021/jp307896c

    Article  Google Scholar 

  17. M. Krämer, U.H.F. Bunz, A. Dreuw, Comprehensive look at the photochemistry of tolane. J. Phys. Chem. A 121, 946–953 (2017). https://doi.org/10.1021/acs.jpca.6b09596

    Article  Google Scholar 

  18. C. Robertson, G.A. Worth, Modelling the non-radiative singlet excited state isomerization of diphenyl-acetylene: a vibronic coupling model. Chem. Phys. 510, 17–29 (2018). https://doi.org/10.1016/j.chemphys.2018.04.020

    Article  Google Scholar 

  19. T. Fujiwara, M.Z. Zgierski, E.C. Lim, Spectroscopy and photophysics of 1,4-bis (phenylethynyl)benzene: effects of ring torsion and dark πσ* state. J. Phys. Chem. A 112, 4736–4741 (2008). https://doi.org/10.1021/jp711064g

    Article  Google Scholar 

  20. G. Breuil, E. Mangaud, B. Lasorne, O. Atabek, M. Desouter-Lecomte, Funneling dynamics in a phenylacetylene trimer: coherent excitation of donor excitonic states and their superposition. J. Chem. Phys. 155, 034303 (2021). https://doi.org/10.1063/5.0056351

    Article  ADS  Google Scholar 

  21. C. Adamo, D. Jacquemin, The calculations of excited-state properties with time-dependent density functional theory. Chem Soc. Rev. 42, 845–856 (2013). https://doi.org/10.1039/C2CS35394F

    Article  Google Scholar 

  22. E.K.-L. Ho, T. Etienne, B. Lasorne, Vibronic properties of para-polyphenylene ethynylenes: TD-DFT insights. J. Chem. Phys. 146, 164303 (2017). https://doi.org/10.1063/1.4981802

    Article  ADS  Google Scholar 

  23. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Foxnoop Gaussian-16 Revision A .03 gaussian Inc. Wallingford CT (2016)

  24. F. Santoro, A. Lami, R. Improta, J. Bloino, V. Barone, Effective method for the computation of optical spectra of large molecules at finite temperature including the Duschinsky and Herzberg-Teller effect: The Qx band of porphyrin as a case study. J. Chem. Phys. 128, 224311 (2008). https://doi.org/10.1063/1.2929846

    Article  ADS  Google Scholar 

  25. J.N. Harvey, M. Aschi, H. Schwarz, W. Koch, The singlet and triplet states of phenyl cation. A hybrid approach for locating minimum energy crossing points between non-interacting potential energy surfaces. Theo. Chem. Acc. 99, 95–99 (1998). https://doi.org/10.1007/s002140050309

    Article  Google Scholar 

  26. B. Gonon, A. Perveaux, F. Gatti, D. Lauvergnat, B. Lasorne, On the applicability of a wavefunction-free, energy-based procedure for generating first-order non-adiabatic couplings around conical intersections. J. Chem. Phys. 147, 114114 (2017). https://doi.org/10.1063/1.4991635

    Article  ADS  Google Scholar 

  27. T. Etienne, X. Assfeld, A. Monari, Toward a quantitative assessment of electronic transitions’ charge-transfer character. J. Chem. Theory Comput. 10, 3896–3905 (2014). https://doi.org/10.1021/ct5003994

    Article  Google Scholar 

  28. T. Etienne, Probing the locality of excited states with linear algebra. J. Chem. Theory Comput. 11, 1692–1699 (2015). https://doi.org/10.1021/ct501163b

    Article  Google Scholar 

  29. T. Etienne, Towards rigorous foundations for the natural-orbital representation of molecular electronic transitions (2021). arXiv:2104.11947

  30. T. Etienne, Molecular electronic-structure reorganization: analysis (mesra) (2019). https://mesrasoftware.wordpress.com

  31. T. Le Bahers, C. Adamo, I..A. Ciofini, Qualitative index of spatial extent in charge–transfer excitations. J. Chem. Theory Comput. 7, 2498–2506 (2011). https://doi.org/10.1021/ct200308m

    Article  Google Scholar 

  32. M. Head-Gordon, A.M. Grana, D. Maurice, C.A. White, Analysis of electronic transitions as the difference of electron attachment and detachment densities. J. Phys. Chem. 99, 14261–14270 (1995). https://doi.org/10.1021/j100039a012

    Article  Google Scholar 

  33. M. Gutmann, M. Gudipati, P.F. Schoenzart, G. Hohlneicher, Electronic spectra of matrix-isolated tolan: site selective one- and two-photon spectra. J. Phys. Chem. 96, 2433–2442 (1992). https://doi.org/10.1021/j100185a010

    Article  Google Scholar 

  34. Y. Amatatsu, M. Hosokawa, Theoretical study on the photochemical behavior of diphenylacetylene in the low-lying excited states. J. Phys. Chem. A 108, 10238–10244 (2004). https://doi.org/10.1021/jp047308n

    Article  Google Scholar 

  35. T. Suzuki, M. Nakamura, T. Isozaki, T. Ikoma, Dark-excited states of diphenylacetylene studied by nonresonant two-photon excitation optical-probing photoacoustic spectroscopy. Int. J. Thermophys. 33, 2046–2054 (2012). https://doi.org/10.1007/s10765-012-1296-8

    Article  ADS  Google Scholar 

  36. C. Ferrante, U. Kensy, B. Dick, Does diphenylacetylene (tolan) fluoresce from its second excited singlet state? Semiempirical MO calculations and fluorescence quantum yield measurements. J. Phys. Chem. 97, 13457–13463 (1993). https://doi.org/10.1021/j100153a008

    Article  Google Scholar 

  37. M. Hodecker, A.M. Driscoll, U.H.F. Bunz, A. Dreuw, Twisting and bending photo-excited phenylethynylbenzenes — a theoretical analysis. Phys. Chem. Chem. Phys. 22, 9974–9981 (2020). https://doi.org/10.1039/D0CP01662D

Download references

Acknowledgements

The authors wish to acknowledge scientific and financial support from the GDR UP network and the French Ministry of Higher Education and Research for funding the PhD thesis of GB.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Etienne or B. Lasorne.

Additional information

Ultrafast Phenomena from attosecond to picosecond timescales: theory and experiments. Guest editors: Franck Lépine, Lionel Poisson.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Breuil, G., Etienne, T. & Lasorne, B. Bright-to-dark-to-bright photoisomerisation in a forked (phenylene ethynylene) dendrimer prototype and its building blocks: a new mechanistic shortcut for excitation-energy transfer?. Eur. Phys. J. Spec. Top. 232, 2101–2115 (2023). https://doi.org/10.1140/epjs/s11734-023-00816-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00816-6

Navigation