Skip to main content
Log in

Ultrafast formation of exciplex species in dicyanoanthracene ZSM-5 revealed by transient emission and vibrational spectroscopy

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The photo-physical properties of dicyanoanthracene (DCA) molecules adsorbed on the external surface of ZSM-5 zeolite, forming DCA@ZSM-5 composites, have been investigated by picosecond transient emission, femtosecond transient absorption infrared vibrational spectroscopy, steady-state UV–vis, and quantum chemistry calculations. Following the photoexcitation at 420 nm of DCA@ZSM-5, the formation of the localized, LE, excited S1 state of DCA emitting below 500 nm is observed. LE is rapidly and quasi-exclusively converted into two distinct exciplex species, EX1 and EX2, detected by their emission above 520 nm, with a lifetime of 5 ns and 20 ns, respectively. The different transient species can be identified by the frequency of the CN stretching vibration that is a marker of the charge delocalisation and that is peaking respectively at 2162 (LE), 2174 (EX1) and 2187 (EX2) cm−1. DFT and TD-DFT calculations further support the assignment. The results show that the external surface of zeolite is an appropriate playground for the development of novel photoactive host–guest materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

The data will be made available on reasonable request.

References

  1. J.C. Scaiano, H. García, Intrazeolite photochemistry: toward supramolecular control of molecular photochemistry. Acc. Chem. Res. 32, 783 (1999)

    Google Scholar 

  2. N.J. Turro, From boiling stones to smart crystals: supramolecular and magnetic isotope control of radical-radical reactions in zeolites. Acc. Chem. Res. 33, 637 (2000)

    Google Scholar 

  3. G. Calzaferri, K. Lutkouskaya, Mimicking the antenna system of green plants. Photochem. Photobiol. Sci. 7, 879 (2008)

    Google Scholar 

  4. H.S. Kim, K.B. Yoon, Preparation and characterization of CdS and PbS Quantum Dots in Zeolite Y and Their Applications for Nonlinear Optical Materials and Solar Cell. Coord. Chem. Rev. 263–264, 239 (2014)

    Google Scholar 

  5. V. Ramamurthy, J. Sivaguru, Supramolecular Photochemistry as a Potential Synthetic Tool: Photocycloaddition. Chem. Rev. 116, 9914 (2016)

    Google Scholar 

  6. O. Fenwick et al., Tuning the energetics and tailoring the optical properties of silver clusters confined in zeolites. Nat. Mater. 15, 1017 (2016)

    ADS  Google Scholar 

  7. V. Ramamurthy, N.J. Turro, Photochemistry of organic molecules within zeolites: role of cations. J. Incl. Phenom. Mol. Recognit. Chem. 21, 239 (1995)

    Google Scholar 

  8. S. Hashimoto, Zeolite photochemistry: impact of zeolites on photochemistry and feedback from photochemistry to zeolite science. J. Photochem. Photobiol. C Photochem. Rev. 4, 19 (2003)

    Google Scholar 

  9. P.K. Dutta, Y. Kim, Photochemical processes in zeolites: new developments. Curr. Opin. Solid State Mater. Sci. 7, 483 (2003)

    ADS  Google Scholar 

  10. M. Busby, C. Blum, M. Tibben, S. Fibikar, G. Calzaferri, V. Subramaniam, L. De Cola, Time, space, and spectrally resolved studies on j-aggregate interactions in Zeolite L nanochannels. J. Am. Chem. Soc. 130, 10970 (2008)

    Google Scholar 

  11. S. Mintova, V. De Waele, M. Hölzl, U. Schmidhammer, B. Mihailova, E. Riedle, T. Bein, Photochemistry of 2-(2′-hydroxyphenyl)benzothiazole encapsulated in nanosized zeolites. J. Phys. Chem. A 108, 10640 (2004)

    Google Scholar 

  12. R.Q. Albuquerque, J. Kühni, P. Belser, L. de Cola, On the reversible photoisomerization of spiropyran-modified zeolite l single crystals. ChemPhysChem 11, 575 (2010)

    Google Scholar 

  13. N. Alarcos, B. Cohen, M. Ziółek, A. Douhal, Photochemistry and photophysics in silica-based materials: ultrafast and single molecule spectroscopy observation. Chem. Rev. 117, 13639 (2017)

    Google Scholar 

  14. G. Flachenecker, A. Materny, The elementary steps of the photodissociation and recombination reactions of iodine molecules enclosed in cages and channels of zeolite crystals: a femtosecond time-resolved study of the geometry effect. J. Chem. Phys. 120, 5674 (2004)

    ADS  Google Scholar 

  15. M. Gil, M. Ziółek, J.A. Organero, A. Douhal, Confined fast and ultrafast dynamics of a photochromic proton-transfer dye within a zeolite nanocage. J. Phys. Chem. C 114, 9554 (2010)

    Google Scholar 

  16. T. Bein, Host-guest interactions in Zeolites and periodic mesoporous materials. Stud. Surf. Sci. Catal. 168, 611–657 (2007)

    Google Scholar 

  17. M. Bryckaert, A. Kharchenko, O. Lebedev, B. Dong, I. De Waele, G. Buntinx, O. Poizat, S. Mintova, V. De Waele, Hot-electron photodynamics of silver-containing nanosized zeolite films revealed by transient absorption spectroscopy. J. Phys. Chem. C 121, 26958 (2017)

    Google Scholar 

  18. F. Kawtharani, S. Mintova, R. Retoux, M. Mostafavi, G. Buntinx, V. De Waele, Hot-electron photodynamics in silver-containing BEA-type nanozeolite studied by femtosecond transient absorption spectroscopy. ChemPhysChem 21, 2634 (2020)

    Google Scholar 

  19. J.K. Thomas, Physical aspects of photochemistry and radiation chemistry of molecules adsorbed on SiO2, γ-Al2O3, zeolites, and clays. Chem. Rev. 93, 301 (1993)

    Google Scholar 

  20. J.K. Thomas, Physical aspects of radiation-induced processes on SiO2, γ-Al2O3, zeolites, and clays. Chem. Rev. 105, 1683 (2005)

    Google Scholar 

  21. N.J. Turro, X.-G. Lei, W. Li, Z. Liu, A. McDermott, M.F. Ottaviani, L. Abrams, Photochemical and magnetic resonance investigations of the supramolecular structure and dynamics of molecules and reactive radicals on the external and internal surface of MFI zeolites. J. Am. Chem. Soc. 122, 11649 (2000)

    Google Scholar 

  22. A. Moscatelli, Z. Liu, X. Lei, J. Dyer, L. Abrams, M.F. Ottaviani, N.J. Turro, Photolysis of Dibenzyl Ketones Sorbed on MFI zeolites in the presence of spectator molecules: cage effects, kinetics, and external surface sites characterization. J. Am. Chem. Soc. 130, 11344 (2008)

    Google Scholar 

  23. V. Valtchev, L. Tosheva, Porous nanosized particles: preparation, properties, and applications. Chem. Rev. 113, 6734 (2013)

    Google Scholar 

  24. S. Mintova, M. Jaber, V. Valtchev, Nanosized microporous crystals: emerging applications. Chem. Soc. Rev. 44, 7207 (2015)

    Google Scholar 

  25. P. Kumar et al., One-dimensional intergrowths in two-dimensional zeolite nanosheets and their effect on ultra-selective transport. Nat. Mater. 19, 443 (2020)

    ADS  Google Scholar 

  26. M. Hureau, A. Moissette, L. Tzanis, T.J. Daou, Effects of the zeolite particle size on the charge separated states. Microporous Mesoporous Mater. 254, 121 (2017)

    Google Scholar 

  27. L. Duplouy, A. Moissette, M. Hureau, V. De Waele, T.J. Daou, I. Batonneau-Gener, Effect of zeolite morphology on charge separated states: ZSM-5-type nanocrystals, nanosheets and nanosponges. Phys. Chem. Chem. Phys. 22, 12015 (2020)

    Google Scholar 

  28. Y. Kim, A. Das, H. Zhang, P.K. Dutta, Zeolite membrane-based artificial photosynthetic assembly for long-lived charge separation. J. Phys. Chem. B 109, 6929 (2005)

    Google Scholar 

  29. X. Liu, J.K. Thomas, Photophysical properties of pyrene in zeolites: adsorption and distribution of pyrene molecules on the surfaces of Zeolite L and mordenite. Chem. Mater. 6, 2303 (1994)

    Google Scholar 

  30. X. Liu, G. Zhang, J.K. Thomas, Spectroscopic studies of electron and hole trapping in zeolites: formation of hydrated electrons and hydroxyl radicals. J. Phys. Chem. B 101, 2182 (1997)

    Google Scholar 

  31. A. Moissette, H. Vezin, I. Gener, J. Patarin, C. Brémard, Electron-hole pairs stabilized in Al-ZSM-5 Zeolites. Angew. Chem. - Int. Ed. 41, 1241 (2002)

    Google Scholar 

  32. A. Moissette, S. Marquis, D. Cornu, H. Vezin, C. Brémard, Long-lived spin-correlated pairs generated by photolysis of naphthalene occluded in non-brønsted acidic ZSM-5 zeolites. J. Am. Chem. Soc. 127, 15417 (2005)

    Google Scholar 

  33. P.K. Dutta, M. Severance, Photoelectron transfer in zeolite cages and its relevance to solar energy conversion. J. Phys. Chem. Lett. 2, 467 (2011)

    Google Scholar 

  34. C. Yang, J.-D. Yang, Y.-H. Li, X. Li, J.-P. Cheng, 9,10-Dicyanoanthracene catalyzed decarboxylative alkynylation of carboxylic acids under visible-light irradiation. J. Org. Chem. 81, 12357 (2016)

    Google Scholar 

  35. E. Vauthey, Investigation of the photoinduced electron transfer reaction between 9,10-dicyanoanthracene and 1-methylnaphthalene in acetonitrile using picosecond transient grating spectroscopy. J. Phys. Chem. A 101, 1635 (1997)

    Google Scholar 

  36. E. Vauthey, C. Högemann, X. Allonas, Direct investigation of the dynamics of charge recombination following the fluorescence quenching of 9,10-dicyanoanthracene by various electron donors in acetonitrile. J. Phys. Chem. A 102, 7362 (1998)

    Google Scholar 

  37. S. Iwai, S. Murata, R. Katoh, M. Tachiya, K. Kikuchi, Y. Takahashi, Ultrafast charge separation and exciplex formation induced by strong interaction between electron donor and acceptor at short distances. J. Chem. Phys. 112, 7111 (2000)

    ADS  Google Scholar 

  38. Y. Wang, O. Haze, J.P. Dinnocenzo, S. Farid, R.S. Farid, I.R. Gould, Bonded exciplexes. A new concept in photochemical reactions. J. Org. Chem. 72, 6970 (2007)

    Google Scholar 

  39. E. Vauthey, Elucidating the mechanism of bimolecular photoinduced electron transfer reactions. J. Phys. Chem. B 126, 778 (2022)

    Google Scholar 

  40. B. Dereka, M. Koch, E. Vauthey, Looking at photoinduced charge transfer processes in the IR: answers to several long-standing questions. Acc. Chem. Res. 50, 426 (2017)

    Google Scholar 

  41. M. Koch, G. Licari, E. Vauthey, Bimodal exciplex formation in bimolecular photoinduced electron transfer revealed by ultrafast time-resolved infrared absorption. J. Phys. Chem. B 119, 11846 (2015)

    Google Scholar 

  42. M. Koch, R. Letrun, E. Vauthey, Exciplex formation in bimolecular photoinduced electron-transfer investigated by ultrafast time-resolved infrared spectroscopy. J. Am. Chem. Soc. 136, 4066 (2014)

    Google Scholar 

  43. T. Mani, D.C. Grills, M.D. Newton, J.R. Miller, Electron LOCALIZATION OF ANIONS PROBED BY NITRILE VIBRATIOns. J. Am. Chem. Soc. 137, 10979 (2015)

    Google Scholar 

  44. G. Lee, D. Kossowska, J. Lim, S. Kim, H. Han, K. Kwak, M. Cho, Cyanamide as an infrared reporter: comparison of vibrational properties between nitriles bonded to N and C atoms. J. Phys. Chem. B 122, 4035 (2018)

    Google Scholar 

  45. S. Choi, J. Park, K. Kwak, M. Cho, Substituent effects on the vibrational properties of the CN stretch mode of aromatic nitriles: ir probes useful for time-resolved IR spectroscopy. Chem. - Asian J. 16, 2626 (2021)

    Google Scholar 

  46. J. Kubota, M. Furuki, Y. Goto, J. Kondo, A. Wada, K. Domen, C. Hirose, Vibrational lifetimes of surface hydroxyl groups of zeolites by picosecond IR pulses. Chem. Phys. Lett. 204, 273 (1993)

    ADS  Google Scholar 

  47. M. Kashitani et al., Transient absorption spectra of vibrationally excited OH/OD groups in mordenite zeolites: effect of Xe adsorption. J. Chem. Phys. 105, 6665 (1996)

    ADS  Google Scholar 

  48. M. Bonn, H.J. Bakker, A.W. Kleyn, R.A. Van Santen, Dynamics of infrared photodissociation of methanol clusters in zeolites and in solution. J. Phys. Chem. 100, 15301 (1996)

    Google Scholar 

  49. A. Ghose et al., Emission properties of oxyluciferin and its derivatives in water: revealing the nature of the emissive species in firefly bioluminescence. J. Phys. Chem. B 119, 2638 (2015)

    Google Scholar 

  50. M. J. Frisch et al., Gaussian˜16 Revision C.01, (2016).

  51. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  52. C. Adamo, V. Barone, Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158 (1999)

    ADS  Google Scholar 

  53. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010)

    ADS  Google Scholar 

  54. R.A. Kendall, T.H. Dunning, R.J. Harrison, Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 96, 6796 (1992)

    ADS  Google Scholar 

  55. J. Eriksen, C.S. Foote, Electron-transfer fluorescence quenching and exciplexes of cyano-substituted anthracenes. J. Phys. Chem. 82, 2659 (1978)

    Google Scholar 

  56. B. Manna, R. Ghosh, D.K. Palit, Exciton dynamics in anthracene nanoaggregates. J. Phys. Chem. C 119, 10641 (2015)

    Google Scholar 

  57. A.F. Olea, D.R. Worrall, F. Wilkinson, S.L. Williams, A.A. Abdel-Shafi, Solvent effects on the photophysical properties of 9,10-dicyanoanthracene. Phys. Chem. Chem. Phys. 4, 161 (2002)

    Google Scholar 

  58. J.S. Beckwith, A. Aster, E. Vauthey, The excited-state dynamics of the radical anions of cyanoanthracenes. Phys. Chem. Chem. Phys. 24, 568 (2022)

    Google Scholar 

  59. I.R. Gould, R.H. Young, L.J. Mueller, S. Farid, A.C. Albrecht, Electronic structures of exciplexes and excited charge-transfer complexes. J. Am. Chem. Soc. 116, 8188 (1994)

    Google Scholar 

  60. R.H. Young, A.M. Feinberg, J.P. Dinnocenzo, S. Farid, Transition from charge-transfer to largely locally excited exciplexes, from structureless to vibrationally structured emissions. Photochem. Photobiol. 91, 624 (2015)

    Google Scholar 

  61. E. Dolotova, D. Dogadkin, I. Soboleva, M. Kuzmin, O. Nicolet, E. Vauthey, Lifetimes of partial charge transfer exciplexes of 9-cyanophenanthrene and 9-cyanoanthracene. Chem. Phys. Lett. 380, 729 (2003)

    ADS  Google Scholar 

  62. F. Vazart, C. Latouche, P. Cimino, V. Barone, Accurate Infrared (IR) spectra for molecules containing the C≡N moiety by anharmonic computations with the double hybrid B2PLYP density functional. J. Chem. Theory Comput. 11, 4364 (2015)

    Google Scholar 

  63. J.M. Rodgers, R.M. Abaskharon, B. Ding, J. Chen, W. Zhang, F. Gai, Fermi resonance as a means to determine the hydrogen-bonding status of two infrared probes. Phys. Chem. Chem. Phys. 19, 16144 (2017)

    Google Scholar 

  64. P. Coulter, M.P. Grubb, D. Koyama, I.V. Sazanovich, G.M. Greetham, A.J. Orr-Ewing, Recombination, solvation and reaction of CN radicals following ultraviolet photolysis of ICN in organic solvents. J. Phys. Chem. A 119, 12911 (2015)

    Google Scholar 

  65. P. Hamm, Coherent effects in femtosecond infrared spectroscopy. Chem. Phys. 200, 415 (1995)

    Google Scholar 

Download references

Acknowledgements

Financial support from the Chevreul institute (FR 2638), the Ministère de l'Enseignement Supérieur et de la Recherche, the Région Haut de France, and FEDER is acknowledged. FTIR and FT Raman measurements were carried out using the facilities of the clusters of vibrational spectroscopy of the advanced characterization platform of the Institute E. Chevreul. This work was granted access to the HPC resources of CINES (Centre Informatique National de l’Enseignement Supérieur) and IDRIS (Institut du Développement et des Ressources en Informatique Scientifique) under the allocations A0090806933 and A0110806933 made by GENCI (Grand Équipement National de Calcul Intensif).

Funding

Financial support from the Chevreul institute (FR 2638), the Ministère de l'Enseignement Supérieur et de la Recherche, the Région Haut de France, and FEDER is acknowledged. FTIR and FT Raman measurements were carried out using the facilities of the clusters of vibrational spectroscopy of the advanced characterization platform of the Institute E. Chevreul. This work was granted access to the HPC resources of CINES (Centre Informatique National de l’Enseignement Supérieur) and IDRIS (Institut du Développement et des Ressources en Informatique Scientifique) under the allocations A0090806933 and A0110806933 made by GENCI (Grand Équipement National de Calcul Intensif).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent De Waele.

Additional information

Ultrafast Phenomena from attosecond to picosecond timescales: theory and experiments. Guest editors: Franck Lépine, Lionel Poisson.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duplouy, L., Hureau, M., Moncomble, A. et al. Ultrafast formation of exciplex species in dicyanoanthracene ZSM-5 revealed by transient emission and vibrational spectroscopy. Eur. Phys. J. Spec. Top. 232, 2145–2156 (2023). https://doi.org/10.1140/epjs/s11734-023-00813-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00813-9

Navigation