Skip to main content
Log in

Isolated wave segments in a neural tissue model with volume transmission: discreteness matters

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Isolated wave segments are a type of spatiotemporal activity that has been repeatedly reported in experimental studies of spreading depolarization on the cerebral cortex and retina of laboratory animals. However, it has been theoretically shown that such a pattern cannot be stable in a continuous excitable medium. In our work, we address this problem using the model of a discrete–continuous medium. We present the targeted numerical study of isolated wave segments, including scenarios of their emergence and an estimation of their stability to various deformations. We show that an isolated wave segment can exhibit the properties of a space-time attractor by cyclically changing its shape and approaching it from different initial conditions. Such a wave segment is not necessarily small, although small segments may occur more easily and are, therefore, more likely. Finally, we show that the behavior we found persists also under conditions of a heterogeneous propagation medium, which indicates the applicability of our findings to the analysis of spatiotemporal patterns in real nervous tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

This work has no associated data.

References

  1. A.C. Charles, S.M. Baca, Nat. Rev. Neurol. 9, 637 (2013)

    Article  Google Scholar 

  2. J.P. Dreier, C.L. Lemale, V. Kola, A. Friedman, K. Schoknecht, Neuropharmacology 134, 189 (2018)

    Article  Google Scholar 

  3. K. Eikermann-Haerter, Headache 54, 1146 (2014)

    Article  Google Scholar 

  4. A.A. Leao, J. Neurophysiol. 7, 359 (1944)

    Article  Google Scholar 

  5. L.A.B.R.I. University of California, M.A.B. Brazier, Cortical excitability and steady potentials: relations of basic research to space biology. In Proceedings of the First Conference, 1961. Editor: Mary AB Brazier (University of California Press, 1963)

  6. H.C. Tuckwell, R.M. Miura, Biophys. J. 23, 257 (1978)

    Article  Google Scholar 

  7. H. Kager, W.J. Wadman, G.G. Somjen, J. Neurophysiol. 84, 495 (2000)

    Article  Google Scholar 

  8. B.E. Shapiro, J. Comput. Neurosci. 10, 99 (2001)

    Article  Google Scholar 

  9. G. Somjen, H. Kager, W. Wadman, J. Comput. Neurosci. 25, 349 (2008)

    Article  Google Scholar 

  10. W. Yao, H. Huang, R.M. Miura, Bull. Math. Biol. 73, 2773 (2011)

    Article  MathSciNet  Google Scholar 

  11. H. Tuckwell, AIP Conference Proceedings, vol. 1028, pp. 46-64 (2008) 1028

  12. M.A. Dahlem et al., Physica D Nonlinear Phenom. 239, 889 (2010)

    Article  ADS  Google Scholar 

  13. E. Santos et al., NeuroImage 99, 244 (2014)

    Article  Google Scholar 

  14. Z. Zheng, J. Luo, Z. Cao, S. Tan, J. Lv, J. Stroke Cerebrovasc. Dis. 31, 106476 (2022)

    Article  Google Scholar 

  15. M. Dahlem, E. Chronicle, Prog. Neurobiol. 74, 351 (2004)

    Article  Google Scholar 

  16. M.A. Dahlem, S.C. Müller, Annalen der Physik 13, 442 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  17. M.A. Dahlem, N. Hadjikhani, PloS One 4, e5007 (2009)

    Article  ADS  Google Scholar 

  18. M.A. Dahlem et al., Front. Comput. Neurosci. 9, 29 (2015)

    Article  Google Scholar 

  19. V. Zykov, K. Showalter, Phys. Rev. Lett. 94, 068302 (2005)

    Article  ADS  Google Scholar 

  20. A. Kenny, M.J. Plank, T. David, J. Theor. Biol. 472, 11 (2019)

    Article  ADS  Google Scholar 

  21. P.A. Arroyo, S. Alonso, R.W. dos Santos, Phys. Rev. E 97, 032214 (2018)

    Article  ADS  Google Scholar 

  22. S.A. Neymotin et al., Neural Comput. 27, 898 (2015)

    Article  MathSciNet  Google Scholar 

  23. C. Iadecola, Neuron 96, 17 (2017)

    Article  Google Scholar 

  24. D. Postnov, F. Müller, R. Schuppner, L. Schimansky-Geier, Phys. Rev. E 80, 031921 (2009)

    Article  ADS  Google Scholar 

  25. D. Postnov, D. Postnov, L. Schimansky-Geier, Brain Res. 1434, 200 (2012)

    Article  Google Scholar 

  26. A. Verisokin, D. Verveyko, E.A. Kuryshova, D. Postnov, Chaos 28, 106326 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  27. E. Syková, C. Nicholson, Physiol. Rev. 88, 1277 (2008)

    Article  Google Scholar 

  28. J. Tønnesen, V.K. Inavalli, U.V. Nägerl, Cell 172, 1108 (2018)

    Article  Google Scholar 

  29. P.E. Kloeden, E. Platen, J. Stat. Phys. 66, 283 (1992)

    Article  ADS  Google Scholar 

  30. M. Khodabin, M. Rostami, Adv. Differ. Equ. 2015, 1 (2015)

    Article  Google Scholar 

  31. C. Rackauckas, Q. Nie, Discrete and continuous dynamical systems. Ser. B 22, 2731 (2017)

    MATH  Google Scholar 

  32. D.E. Postnov, D.D. Postnov, R. Zhirin, The “AGEOM_CUDA” software for simulation of oscillatory and wave processes in two-dimensional media of arbitrary geometry on the basis of high-speed parallel computing on graphics processing unit technology CUDA, RF registration certificate #2012610085 from 10.01.2012. (in Russian) (2012)

  33. F. Kneer, E. Schöll, M.A. Dahlem, New J. Phys. 16, 053010 (2014)

    Article  ADS  Google Scholar 

  34. N. Akhmediev, A. Ankiewicz, Dissipative Solitons: From Optics to Biology and Medicine (Springer, New York, 2008)

    MATH  Google Scholar 

  35. M. Yu et al., Nat. Commun. 8, 1 (2017)

    Article  ADS  Google Scholar 

  36. R. Metzler, A.V. Chechkin. arXiv:2204.01048 (2022)

  37. V. Zykov, Eur. Phys. J. Spec. Top. 157, 209 (2008)

    Article  Google Scholar 

  38. V. Zykov, E. Bodenschatz, New J. Phys. 16, 043030 (2014)

    Article  ADS  Google Scholar 

  39. V.S. Zykov, E. Bodenschatz, Phys. Rev. E 97, 030201 (2018)

    Article  ADS  Google Scholar 

  40. J. Keener, Siam J. Appl. Math. 47 (1987)

  41. T. Erneux, G. Nicolis, Physica D Nonlinear Phenom. 67, 237 (1993)

    Article  ADS  Google Scholar 

  42. A. Hagberg, E. Meron, Phys. Rev. E 57, 299 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  43. G. Fáth, Physica D Nonlinear Phenom. 116, 176 (1998)

    Article  ADS  Google Scholar 

  44. N. Kouvaris, T. Isele, A. Mikhailov, E. Schöll, EPL 106, 68001 (2014)

    Article  ADS  Google Scholar 

  45. M. Dahlem, T. Isele, J. Math. Neurosci. 3, 7 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Russian Science Foundation, project #22-15-00143 (sections 1, 2.1, 3.3, 3.4, 3.5, 4), and by the government of the Russian Federation, project #075-15-2022-1094 (sections 2.3, 3.1, 3.2,4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry E. Postnov.

Additional information

Brain Physiology Meets Complex Systems. Guest editors: Thomas Penzel, Teemu Myllylä, Oxana V. Semyachkina-Glushkovskaya, Alexey Pavlov, Anatoly Karavaev.

Supplementary Information

Below is the link to the electronic supplementary material.

11734_2023_810_MOESM1_ESM.pdf

The following supporting information can be downloaded at https://doi.org/10.5281/zenodo.7576597: program code for the implementation of the model, video examples of the solutions of the proposed model that demonstrate the scenarios of SWS emergence and the Matlab code for the implementation of the cellular automaton. (PDF 156 KB)

Below is the link to the electronic supplementary material.

Supplementary file2 (PDF 30 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verisokin, A.Y., Verveyko, D.V. & Postnov, D.E. Isolated wave segments in a neural tissue model with volume transmission: discreteness matters. Eur. Phys. J. Spec. Top. 232, 499–508 (2023). https://doi.org/10.1140/epjs/s11734-023-00810-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00810-y

Navigation