Abstract
Liquid crystals are assemblies of rod-like molecules which self-organize to form mesophases, in between ordinary liquids and anisotropic crystals. At each point, the molecules collectively orient themselves along a privileged direction, which locally defines an orientational order. Sometimes, this order is broken, and singularities appear in the form of topological defects. This tutorial article is dedicated to the geometry, topology, and physics of these defects. We introduce the main models used to describe the nematic phase and discuss the isotropic–nematic phase transition. Then, we present the different families of defects in nematics and examine some of their physical outcomes. Finally, we show that topological defects are universal patterns of nature, appearing not only in soft matter, but also in biology, cosmology, geology, and even particle physics.
Similar content being viewed by others
Data Availability Statement
No data associated in the manuscript.
Notes
Note that the choice of the second Legendre polynomial here implicitly assumes three-component \(\vec n\) vectors. For two-component vectors, a different choice is needed [74].
Other possibilities include lyotropic nematics: the external parameter is the concentration of nematogens in a solvent, and the most adequate description is Onsager’s model.
The sign of m can be distinguished by the rotation of the crossed polarizers. Indeed, polarizing microscopy reveals Schlieren patterns, for which the number of dark brushes is \(4|m|\)0. Dark brushes from a positive (negative) defect rotate in the direction the same as (opposite to) that of the polarizers.
For the sake of simplicity, we omitted the time component, but in relativity, one must bear in mind that time and space are put on an equal footing, and the real interval must involve quadratic terms in cdt, with c the speed of light.
Like curvature, torsion is a property of the connection (actually this is the antisymmetric part of the connection and it vanishes in the case of a Levi–Civita connection, this is why general relativity does not deal with torsion). When torsion vanishes, geodesic (“shortest”) lines are also autoparallel (“straightest,” i.e., lines along which the tangent vector is parallel-transported via the connection).
Vectors at a point x of a manifold live in the tangent space at x. The tangent spaces at neighboring points are different vector spaces, and the vector bundle is understood as the collection of them. The connection is the object which allows us to transport or compare vectors at different points [161].
Finding general regular solutions of these equations is still one of the Millennium open problems listed by the Clay Institute.
There is also another set forming the Ericksen–Leslie equations, which are simpler but limited to uniaxial media and to smooth variations of the nematic ordering.
Still, this difference is also the reason why we have used two different notations for vectors, \(\textbf{r}\) for the ordinary space vectors and \(\vec n\) for the order parameter degrees of freedom.
References
V. Poénaru, Elementary algebraic topology related to the theory of defects and textures. in Ill-Condensed Matter: Les Houches Session XXXI, (World Scientific, 1983), pp. 263–319
H. Kelker, History of liquid crystals. Mol. Cryst. Liq. Cryst. 21(1–2), 1–48 (1973)
T. Sluckin, D. Dunmur, H. Stegemeyer, Crystals that flow (Taylor & Francis, London, 2004)
S.T. Lagerwall, On some important chapters in the history of liquid crystals. Liq. Cryst. 40(12), 1698–1729 (2013)
D. Dunmur, T. Sluckin, Soap, science, and flat-screen TVs: a history of liquid crystals (Oxford University Press, Oxford, 2014)
M. Mitov, Liquid-crystal science from 1888 to 1922: Building a revolution. ChemPhysChem 15(7), 1245–1250 (2014)
F. Reinitzer, Contributions to the knowledge of cholesterol. Liq. Cryst. 5(1), 7–18 (1989)
O. Lehman, Flüssige Kristalle sowie Plastizität von Kristallen im allgemeinen, molekulare Umlagerungen und Aggregatzustandsänderungen (Verlag von Wilhelm Engelmann, Leipzig, 1904)
G. Friedel, Les états mésomorphes de la matière. In Annales de physique 9, 273–474 (1922)
V.A. Belyakov, V.E. Dmitrienko, The blue phase of liquid crystals. Soviet Physics Uspekhi 28(7), 535 (1985)
P. Oswald, P. Pieranski, Nematic and cholesteric liquid crystals: concepts and physical properties illustrated by experiments (CRC Press, New York, 2005)
P. Oswald, P. Pieranski, Smectic and columnar liquid crystals: concepts and physical properties illustrated by experiments (CRC Press, New York, 2005)
J.M. Kosterlitz, D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C: Solid State Phys. 6(7), 1181 (1973)
David R. Nelson. Defects and Geometry in Condensed Matter Physics. (2002)
D Frenkel. Liquids, freezing and glass transition. in Les Houches Session, pp. 689–762 (1991)
D. Andrienko, Introduction to liquid crystals. J. Mol. Liq. 267, 520–541 (2018). (Special Issue Dedicated to the Memory of Professor Y. Reznikov)
P.-G. de Gennes, J. Prost, The physics of liquid crystals, vol. 83 (Oxford University Press, Oxford, 1993)
A.J. Leadbetter, R.M. Richardson, C.N. Colling, The structure of a number of nematogens. le Journal de Physique Colloques 36(C1), C1–C37 (1975)
V. Tsvetkov, On molecular order in the anisotropic liquid phase. Acta Physicochim. URSS 16, 132–147 (1942)
C.W. Oseen, The theory of liquid crystals. Trans. Faraday Soc. 29(140), 883–899 (1933)
F.C. Frank, I. liquid crystals. on the theory of liquid crystals. Discuss. Faraday Soc. 25, 19–28 (1958)
W. Maier, A. Saupe, Eine einfache molekulare theorie des nematischen kristallinflüssigen zustandes. Zeitschrift für Naturforschung A 13(7), 564–566 (1958)
W. Maier, A. Saupe, A simple molecular statistical theory of the nematic crystalline-liquid phase. IZ Naturf. a 14, 882–889 (1959)
S. Singh, Liquid crystals: fundamentals (World Scientific, Singapore, 2002)
G.R. Luckhurst, C. Zannoni, Why is the maier-saupe theory of nematic liquid crystals so successful? Nature 267(5610), 412–414 (1977)
D. Feng, G. Jin, Introduction To Condensed Matter Physics, vol. 1 (World Scientific Publishing Company, Singapore, 2005)
P.G. De Gennes, Phenomenology of short-range-order effects in the isotropic phase of nematic materials. Phys. Lett. A 30(8), 454–455 (1969)
P.G. De Gennes, Short range order effects in the isotropic phase of nematics and cholesterics. Mol. Cryst. Liq. Cryst. 12(3), 193–214 (1971)
A.M. Sonnet, E.G. Virga, Dissipative ordered fluids: theories for liquid crystals (Springer, New York, 2012)
E.F. Gramsbergen, L. Longa, W.H. de Jeu, Landau theory of the nematic-isotropic phase transition. Phys. Rep. 135(4), 195–257 (1986)
A. Majumdar, A. Zarnescu, Landau-de gennes theory of nematic liquid crystals: the oseen-frank limit and beyond. Arch. Ration. Mech. Anal. 196(1), 227–280 (2010)
P.A. Lebwohl, G. Lasher, Nematic-liquid-crystal order–a monte carlo calculation. Phys. Rev. A 6, 426–429 (1972)
S. Singh, Phase transitions in liquid crystals. Phys. Rep. 324(2–4), 107–269 (2000)
G.R. Luckhurst, P. Simpson, Computer simulation studies of anisotropic systems: Viii. the lebwohl-lasher model of nematogens revisited. Mol. Phys. 47(2), 251–265 (1982)
U. Fabbri, C. Zannoni, A monte carlo investigation of the lebwohl-lasher lattice model in the vicinity of its orientational phase transition. Mol. Phys. 58(4), 763–788 (1986)
Z. Zhang, O.G. Mouritsen, M.J. Zuckermann, Weak first-order orientational transition in the lebwohl-lasher model for liquid crystals. Phys. Rev. Lett. 69(19), 2803 (1992)
Z. Zhang, M.J. Zuckermann, O.G. Mouritsen, Phase transition and director fluctuations in the three-dimensional lebwohl-lasher model of liquid crystals. Mol. Phys. 80(5), 1195–1221 (1993)
G. Skačej, C. Zannoni, The nematic-isotropic transition of the lebwohl-lasher model revisited. Phil. Trans. R. Soc. A 379(2201), 20200117 (2021)
A. Gordillo-Guerrero, R. Kenna, J.J. Ruiz-Lorenzo, Scaling behavior of the heisenberg model in three dimensions. Phys. Rev. E 88, 062117 (2013)
A.I.F. Sanchez, R. Paredes, B. Berche, Evidence for a topological transition in nematic-to-isotropic phase transition in two dimensions. Phys. Lett. A 308(5), 461–466 (2003)
A.I. Fariñas-Sanchez, R. Botet, B. Berche, R. Paredes, On the critical behaviour of two-dimensional liquid crystals. Condens. Matter Phys. 13(13601), 1–17 (2010)
Lander Burgelman, Lukas Devos, Bram Vanhecke, Frank Verstraete, Laurens Vanderstraeten. Contrasting pseudo-criticality in the classical two-dimensional heisenberg and \({\rm RP}^2\) models: zero-temperature phase transition versus finite-temperature crossover, (2022)
B. Berche, A.I.F. Sanchez et al., Correlations in the low-temperature phase of the two-dimensional xy model. EPL (Europhysics Letters) 60(4), 539 (2002)
C. Fan, M.J. Stephen, Isotropic-nematic phase transition in liquid crystals. Phys. Rev. Lett. 25(8), 500 (1970)
W.M. Gelbart, B.A. Baron, Generalized van der waals theory of the isotropic–nematic phase transition. J. Chem. Phys. 66(1), 207–213 (1977)
W.M. Gelbart, B. Barboy, A van der waals picture of the isotropic-nematic liquid crystal phase transition. Acc. Chem. Res. 13(8), 290–296 (1980)
M.A. Anisimov, Universality of the critical dynamics and the nature of the nematic-isotropic phase transition. Mol. Cryst. Liq. Cryst. 146(1), 435–461 (1987)
M.A. Anisimov, Critical phenomena in liquids and liquid crystals (CRC Press, New York, 1991)
S. handrasekhar, Liquid crystals (Cambridge University Press, Cambridge, 1992)
P.K. Mukherjee, The puzzle of the nematic-isotropic phase transition. J. Phys.: Condens. Matter 10(41), 9191 (1998)
I. Chuang, R. Durrer, N. Turok, B. Yurke, Cosmology in the laboratory: Defect dynamics in liquid crystals. Science 251(4999), 1336–1342 (1991)
M.J. Bowick, L. Chandar, E.A. Schiff, A.M. Srivastava, The cosmological kibble mechanism in the laboratory: string formation in liquid crystals. Science 263(5149), 943–945 (1994)
M. Kleman, O.D. Lavrentovich, Topological point defects in nematic liquid crystals. Phil. Mag. 86(25–26), 4117–4137 (2006)
B. Van Roie, J. Leys, K. Denolf, C. Glorieux, G. Pitsi, J. Thoen, Weakly first-order character of the nematic-isotropic phase transition in liquid crystals. Phys. Rev. E 72(4), 041702 (2005)
G. Toulouse, M. Kléman, Principles of a classification of defects in ordered media. Journal de Physique Lettres 37(6), 149–151 (1976)
M. Kléman, L. Michel, G. Toulouse, Classification of topologically stable defects in ordered media. Journal de Physique Lettres 38(10), 195–197 (1977)
M. Kléman, L. Michel, Spontaneous breaking of euclidean invariance and classification of topologically stable defects and configurations of crystals and liquid crystals. Les rencontres physiciens-mathématiciens de Strasbourg-RCP25 26, 45–48 (1978)
N.D. Mermin, The topological theory of defects in ordered media. Rev. Mod. Phys. 51(3), 591 (1979)
L. Michel, Symmetry defects and broken symmetry. Configurations hidden symmetry. Rev. Mod. Phys. 52(3), 617 (1980)
G.E. Volovik, O.D. Lavrentovich, Topological dynamics of defects: boojums in nematic drops. Zh. Eksp. Teor. Fiz. 85(6), 1997–2010 (1983)
M.V. Kurik, O.D. Lavrentovich, Defects in liquid crystals: homotopy theory and experimental studies. Soviet Physics Uspekhi 31(3), 196 (1988)
M. Kléman, Defects in liquid crystals. Rep. Prog. Phys. 52(5), 555 (1989)
Maurice Kleman. The topological classification of defects. Formation and Interactions of Topological Defects, 27–61 (1995)
G.E. Volovik, V.P. Mineev. Investigation of singularities in superfluid he 3 in liquid crystals by the homotopic topology methods. in 30 Years Of The Landau Institute–Selected Papers, (World Scientific, 1996), pp. 120–130
R. Durrer, Topological defects in cosmology. New Astron. Rev. 43(2–4), 111–156 (1999)
T.W.B. Kibble. Classification of topological defects and their relevance to cosmology and elsewhere. In itextitTopological defects and the non-equilibrium dynamics of symmetry breaking phase transitions, (Springer, 2000), pp. 7–31
Ç. Demiralp, J.F. Hughes, D.H. Laidlaw, Coloring 3d line fields using boy’s real projective plane immersion. IEEE Trans. Visual Comput. Graphics 15(6), 1457–1464 (2009)
F. Apéry, Models of the real projective plane: computer graphics of Steiner and Boy surfaces (Springer, New York, 2013)
G.P. Alexander, B.G. Chen, E.A. Matsumoto, R.D. Kamien, Colloquium: Disclination loops, point defects, and all that in nematic liquid crystals. Rev. Mod. Phys. 84(2), 497 (2012)
B. Gin-ge Chen, P.J. Ackerman, G.P. Alexander, R.D. Kamien, I.I. Smalyukh, Generating the hopf fibration experimentally in nematic liquid crystals. Phys. Rev. Lett. 110(23), 237801 (2013)
P.J. Ackerman, R.P. Trivedi, B. Senyuk, J. van de Lagemaat, I.I. Smalyukh, Two-dimensional skyrmions and other solitonic structures in confinement-frustrated chiral nematics. Phys. Rev. E 90(1), 012505 (2014)
A.N. Bogdanov, U.K. Rößler, A.A. Shestakov, Skyrmions in nematic liquid crystals. Phys. Rev. E 67(1), 016602 (2003)
J.-S.B. Tai, I.I. Smalyukh et al., Surface anchoring as a control parameter for stabilizing torons, skyrmions, twisted walls, fingers, and their hybrids in chiral nematics. Phys. Rev. E 101(4), 042702 (2020)
A.I.F. Sánchez, R. Paredes, B. Berche, Topological transition in a two-dimensional model of liquid crystal. Phys. Rev. E 72, 031711 (2005)
S.M. Carroll, Spacetime and geometry (Cambridge University Press, Cambridge, 2019)
C. Sátiro, F. Moraes, Lensing effects in a nematic liquid crystal with topological defects. Eur. Phys. J. E 20(2), 173–178 (2006)
C. Sátiro, F. Moraes, On the deflection of light by topological defects in nematic liquid crystals. Eur. Phys. J. E 25(4), 425–429 (2008)
E. Pereira, S. Fumeron, F. Moraes, Metric approach for sound propagation in nematic liquid crystals. Phys. Rev. E 87(2), 022506 (2013)
S. Fumeron, F. Moraes, E. Pereira, Retrieving the saddle-splay elastic constant k24 of nematic liquid crystals from an algebraic approach. Eur. Phys. J. E 39(9), 1–11 (2016)
A. De Padua, F. Parisio-Filho, F. Moraes, Geodesics around line defects in elastic solids. Phys. Lett. A 238(2–3), 153–158 (1998)
A.M. de M Carvalho, C. Sátiro, F. Moraes, Aharonov-bohm–like effect for light propagating in nematics with disclinations. EPL (Europhysics Letters) 80(4), 46002 (2007)
E. Cohen, H. Larocque, F. Bouchard, F. Nejadsattari, Y. Gefen, E. Karimi, Geometric phase from aharonov-bohm to pancharatnam-berry and beyond. Nat. Rev. Phys. 1(7), 437–449 (2019)
P Richard. Feynman. statistical mechanics, a set of lectures. Frontiers in Physics. Perseus Books, (1972)
M.C. Marchetti, J.-F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R.A. Simha, Hydrodynamics of soft active matter. Rev. Mod. Phys. 85(3), 1143 (2013)
J.M. Yeomans, Nature’s engines: active matter. Europhys. News 48(2), 21–25 (2017)
Len Pismen. Active matter within and around us: From self-propelled particles to flocks and living forms. (2021)
M.R. Shaebani, A. Wysocki, R.G. Winkler, G. Gompper, H. Rieger, Computational models for active matter. Nat. Rev. Phys. 2(4), 181–199 (2020)
George Gabriel Stokes et al. On the effect of the internal friction of fluids on the motion of pendulums. (1851)
P.A. Davidson, Turbulence: an introduction for scientists and engineers (Oxford University Press, Oxford, 2015)
There is also another set forming the Ericksen – Leslie equations, which are simpler but limited to uniaxial media and to smooth variations of the nematic ordering
A. Doostmohammadi, J. Ignés-Mullol, Julia M Yeomans, and Francesc Sagués. Active nematics. Nature communications 9(1), 1–13 (2018)
D. Marenduzzo, E. Orlandini, J.M. Yeomans, Hydrodynamics and rheology of active liquid crystals: a numerical investigation. Phys. Rev. Lett. 98(11), 118102 (2007)
S.P. Thampi, R. Golestanian, J.M. Yeomans, Vorticity, defects and correlations in active turbulence. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 372(2029), 20130366 (2014)
L. Giomi, Geometry and topology of turbulence in active nematics. Phys. Rev. X 5(3), 031003 (2015)
S.P. Thampi, J.M. Yeomans, Active turbulence in active nematics. Eur. Phys. J. Spec. Top. 225(4), 651–662 (2016)
R. Alert, J.-F. Joanny, J. Casademunt, Universal scaling of active nematic turbulence. Nat. Phys. 16(6), 682–688 (2020)
Amin, Doostmohammadi, Benoit, Ladoux. Physics of liquid crystals in cell biology. Trends in cell biology (2021)
C. Peng, T. Turiv, Y. Guo, Q.-H. Wei, O.D. Lavrentovich, Command of active matter by topological defects and patterns. Science 354(6314), 882–885 (2016)
M.M. Genkin, A. Sokolov, O.D. Lavrentovich, I.S. Aranson, Topological defects in a living nematic ensnare swimming bacteria. Phys. Rev. X 7(1), 011029 (2017)
Katherine Copenhagen, Ricard Alert, Ned S Wingreen, and Joshua W Shaevitz. Topological defects promote layer formation in myxococcus xanthus colonies. Nat. Phys. 17(2):211–215 (2021)
O.J. Meacock, A. Doostmohammadi, K.R. Foster, J.M. Yeomans, W.M. Durham, Bacteria solve the problem of crowding by moving slowly. Nat. Phys. 17(2), 205–210 (2021)
V. Schaller, A.R. Bausch, Topological defects and density fluctuations in collectively moving systems. Proc. Natl. Acad. Sci. 110(12), 4488–4493 (2013)
A. Chardac, L.A. Hoffmann, Y. Poupart, L. Giomi, D. Bartolo, Topology-driven ordering of flocking matter. Phys. Rev. X 11(3), 031069 (2021)
M.-A. Fardin, B. Ladoux, Living proof of effective defects. Nat. Phys. 17(2), 172–173 (2021)
P. Guillamat, C. Blanch-Mercader, G. Pernollet, K. Kruse, A. Roux, Integer topological defects organize stresses driving tissue morphogenesis. Nat. Mater. 21(5), 588–597 (2022)
F.C. Keber, E. Loiseau, T. Sanchez, S.J. DeCamp, L. Giomi, M.J. Bowick, M.C. Marchetti, Z. Dogic, A.R. Bausch, Topology and dynamics of active nematic vesicles. Science 345(6201), 1135–1139 (2014)
C. Blanch-Mercader, P. Guillamat, A. Roux, K. Kruse, Integer topological defects of cell monolayers: Mechanics and flows. Phys. Rev. E 103(1), 012405 (2021)
Y. Maroudas-Sacks, L. Garion, L. Shani-Zerbib, A. Livshits, E. Braun, K. Keren, Topological defects in the nematic order of actin fibres as organization centres of hydra morphogenesis. Nat. Phys. 17(2), 251–259 (2021)
F.D. Camargo, S. Gokhale, J.B. Johnnidis, D. Fu, G.W. Bell, R. Jaenisch, T.R. Brummelkamp, Yap1 increases organ size and expands undifferentiated progenitor cells. Curr. Biol. 17(23), 2054–2060 (2007)
J.M. Lamar, P. Stern, H. Liu, J.W. Schindler, Z.-G. Jiang, R.O. Hynes, The hippo pathway target, yap, promotes metastasis through its tead-interaction domain. Proc. Natl. Acad. Sci. 109(37), E2441–E2450 (2012)
J. Wang, L. Ma, W. Weng, Y. Qiao, Y. Zhang, J. He, H. Wang, W. Xiao, L. Li, Q. Chu et al., Mutual interaction between yap and creb promotes tumorigenesis in liver cancer. Hepatology 58(3), 1011–1020 (2013)
P. Marti, C. Stein, T. Blumer, Y. Abraham, M.T. Dill, M. Pikiolek, V. Orsini, G. Jurisic, P. Megel, Z. Makowska et al., Yap promotes proliferation, chemoresistance, and angiogenesis in human cholangiocarcinoma through tead transcription factors. Hepatology 62(5), 1497–1510 (2015)
J.S.A. Warren, Y. Xiao, J.M. Lamar, Yap/taz activation as a target for treating metastatic cancer. Cancers 10(4), 115 (2018)
J. Shen, B. Cao, Y. Wang, C. Ma, Z. Zeng, L. Liu, X. Li, D. Tao, J. Gong, D. Xie, Hippo component yap promotes focal adhesion and tumour aggressiveness via transcriptionally activating thbs1/fak signalling in breast cancer. J. Exp. Clin. Cancer Res. 37(1), 1–17 (2018)
Y. Cheng, M. Mao, L. Yong, The biology of yap in programmed cell death. Biomark. Res. 10(1), 1–10 (2022)
T.B. Saw, A. Doostmohammadi, V. Nier, L. Kocgozlu, S. Thampi, Y. Toyama, P. Marcq, C.T. Lim, J.M. Yeomans, B. Ladoux, Topological defects in epithelia govern cell death and extrusion. Nature 544(7649), 212–216 (2017)
J. Zhang, N. Yang, P.K. Kreeger, J. Notbohm, Topological defects in the mesothelium suppress ovarian cancer cell clearance. APL Bioeng. 5(3), 036103 (2021)
R. Jeannerot, J. Rocher, M. Sakellariadou, How generic is cosmic string formation in supersymmetric grand unified theories. Phys. Rev. D 68(10), 103514 (2003)
J. Ellis, M.K. Gaillard, D.V. Nanopoulos, A historical profile of the higgs boson. The Standard Theory of Particle Physics: Essays to Celebrate CERN’s 60th Anniversary, 255–274 (2016)
A.H. Guth, Inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23(2), 347 (1981)
V. Mukhanov, Physical Foundations of Cosmology (Cambridge University Press, Oxford, 2005)
T.W.B. Kibble, Topology of cosmic domains and strings. J. Phys. A: Math. Gen. 9(8), 1387 (1976)
W.H. Zurek, Cosmological experiments in condensed matter systems. Phys. Rep. 276(4), 177–221 (1996)
P. Peter, J.-P. Uzan, Primordial cosmology (Oxford University Press, Oxford, 2009)
S. Digal, R. Ray, A.M. Srivastava, Observing correlated production of defects and antidefects in liquid crystals. Phys. Rev. Lett. 83(24), 5030 (1999)
T. Kibble, Phase-transition dynamics in the lab and the universe. Phys. Today 60(9), 47 (2007)
H. Mukai, P.R.G. Fernandes, B.F. De Oliveira, G.S. Dias, Defect-antidefect correlations in a lyotropic liquid crystal from a cosmological point of view. Phys. Rev. E 75(6), 061704 (2007)
R. Repnik, A. Ranjkesh, V. Simonka, M. Ambrozic, Z. Bradac, S. Kralj, Symmetry breaking in nematic liquid crystals: analogy with cosmology and magnetism. J. Phys.: Condens. Matter 25(40), 404201 (2013)
A. Vilenkin, Cosmic strings and domain walls. Phys. Rep. 121(5), 263–315 (1985)
R.H. Brandenberger, Topological defects and structure formation. Int. J. Mod. Phys. A 9(13), 2117–2189 (1994)
G. Duclos, R. Adkins, D. Banerjee, M.S.E. Peterson, M. Varghese, I. Kolvin, A. Baskaran, R.A. Pelcovits, T.R. Powers, A. Baskaran et al., Topological structure and dynamics of three-dimensional active nematics. Science 367(6482), 1120–1124 (2020)
L.H. Ford, A. Vilenkin, A gravitational analogue of the aharonov-bohm effect. J. Phys. A: Math. Gen. 14(9), 2353 (1981)
M. Simões, M. Pazetti, Liquid-crystals cosmology. EPL (Europhysics Letters) 92(1), 14001 (2010)
A. Cortijo, M.A.H. Vozmediano, Effects of topological defects and local curvature on the electronic properties of planar graphene. Nucl. Phys. B 763(3), 293–308 (2007)
B. Ni, T. Zhang, J. Li, X. Li, H. Gao, Topological design of graphene. Handb. Graph. 2, 1–44 (2019)
M. Pretko, L. Radzihovsky, Fracton-elasticity duality. Phys. Rev. Lett. 120(19), 195301 (2018)
P. Cordier, S. Demouchy, B. Beausir, V. Taupin, F. Barou, C. Fressengeas, Disclinations provide the missing mechanism for deforming olivine-rich rocks in the mantle. Nature 507(7490), 51–56 (2014)
S. Deser, R. Jackiw, G. Hooft, Three-dimensional einstein gravity: dynamics of flat space. Ann. Phys. 152(1), 220–235 (1984)
G. Hooft, A locally finite model for gravity. Found. Phys. 38(8), 733–757 (2008)
C. Barceló, S. Liberati, M. Visser, Analogue gravity. Living Rev. Relat. 14(1), 1–159 (2011)
M.J. Jacquet, S. Weinfurtner, F. König, The next generation of analogue gravity experiments (2020)
C. Ortix, Electrons broken into pieces at crystal defects (2021)
C.W. Peterson, T. Li, W. Jiang, T.L. Hughes, G. Bahl, Trapped fractional charges at bulk defects in topological insulators. Nature 589(7842), 376–380 (2021)
M. Bucher, H.-K. Lo, J. Preskill, Topological approach to alice electrodynamics. Nucl. Phys. B 386(1), 3–26 (1992)
J.J. Blanco-Pillado, K.D. Olum, J.M. Wachter, Comparison of cosmic string and superstring models to nanograv 12.5-year results. Phys. Rev. D 103(10), 103512 (2021)
A. Ardaševa, A. Doostmohammadi, Topological defects in biological matter. Nat. Rev. Phys. 4(6), 354–356 (2022)
Clarice D. Aiello, John M. Abendroth, Muneer Abbas, Andrei Afanasev, Shivang Agarwal, Amartya S. Banerjee, David N. Beratan, Jason N. Belling, Bertrand Berche, Antia Botana, Justin R. Caram, Giuseppe Luca Celardo, Gianaurelio Cuniberti, Aitzol Garcia-Etxarri, Arezoo Dianat, Ismael Diez-Perez, Yuqi Guo, Rafael Gutierrez, Carmen Herrmann, Joshua Hihath, Suneet Kale, Philip Kurian, Ying-Cheng Lai, Tianhan Liu, Alexander Lopez, Ernesto Medina, Vladimiro Mujica, Ron Naaman, Mohammadreza Noormandipour, Julio L. Palma, Yossi Paltiel, William Petuskey, João Carlos Ribeiro-Silva, Juan José Saenz, Elton J. G. Santos, Maria Solyanik-Gorgone, Volker J. Sorger, Dominik M. Stemer, Jesus M. Ugalde, Ana Valdes-Curiel, Solmar Varela, David H. Waldeck, Michael R. Wasielewski, Paul S. Weiss, Helmut Zacharias, and Qing Hua Wang. A chirality-based quantum leap. ACS Nano, 16(4):4989–5035, 2022. PMID: 35318848
T. Araki, F. Serra, H. Tanaka, Defect science and engineering of liquid crystals under geometrical frustration. Soft Matter 9(34), 8107–8120 (2013)
A. Jangizehi, F. Schmid, P. Besenius, K. Kremer, S. Seiffert, Defects and defect engineering in soft matter. Soft Matter 16(48), 10809–10859 (2020)
M.J. Shin, D. Ki Yoon, Role of stimuli on liquid crystalline defects: From defect engineering to switchable functional materials. Materials 13(23), 5466 (2020)
Paul J Ackerman, Zhiyuan Qi, Yiheng Lin, Christopher W Twombly, Mauricio J Laviada, Yves Lansac, and Ivan I Smalyukh. Laser-directed hierarchical assembly of liquid crystal defects and control of optical phase singularities. Scientific reports, 2(1):1–8, 2012
S. Fumeron, E. Pereira, F. Moraes, Principles of thermal design with nematic liquid crystals. Phys. Rev. E 89(2), 020501 (2014)
W.K.P. Barros, E. Pereira, Concurrent guiding of light and heat by transformation optics and transformation thermodynamics via soft matter. Sci. Rep. 8(1), 1–11 (2018)
Y. Guo, M. Jiang, S. Afghah, C. Peng, R.L.B. Selinger, O.D. Lavrentovich, Q.-H. Wei, Photopatterned designer disclination networks in nematic liquid crystals. Adv. Opt. Mater. 9(16), 2100181 (2021)
H. Sakanoue, S. Yamashita, T. Murakami, H. Suzuki, K. Katayama, Controlled formation of topological defects of liquid crystals in micro-wells. Liq. Cryst. 49(4), 580–588 (2022)
A. Manapany, L. Moueddene, B. Berche, S. Fumeron, Diffusion in the presence of a chiral topological defect. Eur. Phys. J. B 95(7), 118 (2022)
S. Fumeron, B. Berche, E. Medina, F.A.N. Santos, F. Moraes, Using torsion to manipulate spin currents. EPL (Europhysics Letters) 117(4), 47007 (2017)
E. Medina, L.A. González-Arraga, D. Finkelstein-Shapiro, B. Berche, V. Mujica, Continuum model for chiral induced spin selectivity in helical molecules. J. Chem. Phys. 142(19), 194308 (2015)
Sébastien Fumeron, Bertrand Berche, and Fernando Moraes. Geometric theory of topological defects: methodological developments and new trends. in preparation
T. Turiv, J. Krieger, G. Babakhanova, H. Yu, S.V. Shiyanovskii, Q.-H. Wei, M.-H. Kim, O.D. Lavrentovich, Topology control of human fibroblast cells monolayer by liquid crystal elastomer. Sci. Adv. 6(20), eaaz6485 (2020)
M. Nakahara, Geometry, topology and physics (IOP Publishing, Bristol, 2003)
Acknowledgements
This review is intended for students and researchers working in theoretical physics. It is written for the jubilee of Malte Henkel, our friend and colleague at Université de Lorraine, who has inspired many students during his career.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Fumeron, S., Berche, B. Introduction to topological defects: from liquid crystals to particle physics. Eur. Phys. J. Spec. Top. 232, 1813–1833 (2023). https://doi.org/10.1140/epjs/s11734-023-00803-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1140/epjs/s11734-023-00803-x