Skip to main content
Log in

Driven magnetic skyrmions in a narrow channel

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Using a particle-based model for skyrmions, we numerically investigate the ordering processes that take place when subjecting interacting skyrmions in a narrow channel to a drive. Due to the interplay of repulsive wall–skyrmion interaction, repulsive skyrmion–skyrmion interaction, and velocity-dependent Magnus force, skyrmions are arranged in lines with different densities. In this ordering process, the Magnus force plays a facilitating role that accelerates the formation of the ordered lines when starting from a disordered initial state. Besides constant drive, we also consider the situation where the drive is periodically switched on and off, which leads to skyrmions transitioning from one arrangement to another. During this rearrangement, the Magnus force is found to impede the relaxation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. A. Fert, N. Reyren, V. Cros, Nat. Rev. Mater. 2, 17031 (2017). https://doi.org/10.1038/natrevmats.2017.31

    Article  ADS  Google Scholar 

  2. Y. Tokura, N. Kanazawa, Chem. Rev. 121, 2857 (2020). https://doi.org/10.1021/acs.chemrev.0c00297

    Article  Google Scholar 

  3. S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, P. Böni, Science 323, 915 (2009). https://doi.org/10.1126/science.1166767

    Article  ADS  Google Scholar 

  4. C. Moreau-Luchaire, C. Moustafis, N. Reyren, J. Sampaio, C.A.F. Vaz, N. Van Home, K. Bouzehouane, K. Garcia, C. Deranlot, P. Warnicke, P. Wohlhüter, J.-M. George, M. Weigand, J. Raabe, V. Cros, A. Fert, Nat. Nanotechnol. 11, 444 (2016). https://doi.org/10.1038/nnano.2015.313

    Article  ADS  Google Scholar 

  5. R. Tolley, S.A. Montoya, E.E. Fullerton, Phys. Rev. Mater. 2, 044404 (2018). https://doi.org/10.1103/PhysRevMaterials.2.044404

    Article  Google Scholar 

  6. J. Brandão, D.A. Dugato, R.L. Seeger, J.C. Denardin, T.J.A. Mori, J.C. Cezar, Sci. Rep. 9, 4144 (2019). https://doi.org/10.1038/s41598-019-40705-4

    Article  ADS  Google Scholar 

  7. R.D. Desautels, L. DeBeer-Schmitt, S.A. Montoya, J.A. Borchers, S.-G. Je, N. Tang, M.-Y. Im, M.R. Fitzsimmons, E.E. Fullerton, D.A. Gilbert, Phy. Rev. Mater. 3, 104406 (2019). https://doi.org/10.1103/PhysRevMaterials.3.104406

    Article  ADS  Google Scholar 

  8. K.G. Rana, A. Finco, F. Fabre, S. Chouaieb, A. Haykal, L.D. Buda-Prejbeanu, O. Fruchart, S. Le Denmat, P. David, M. Belmeguenai, T. Denneulin, R.E. Dunin-Borkowski, G. Gaudin, V. Jacques, O. Boulle, Phys. Rev. Appl. 13, 044079 (2020). https://doi.org/10.1103/PhysRevApplied.13.044079

    Article  ADS  Google Scholar 

  9. X. Zhang, M. Ezawa, Y. Zhou, Sci. Rep. 5, 9400 (2015). https://doi.org/10.1038/srep09400

    Article  ADS  Google Scholar 

  10. S. Luo, M. Song, X. Li, Y. Zhang, J. Hong, X. Yang, X. Zou, N. Xu, L. You, Nano Lett. 18, 1180 (2018). https://doi.org/10.1021/acs.nanolett.7b04722

    Article  ADS  Google Scholar 

  11. A. Fert, V. Cros, J. Sampaio, Nat. Nanotechnol. 8, 152 (2013). https://doi.org/10.1038/nnano.2013.29

    Article  ADS  Google Scholar 

  12. R. Tomasello, E. Martinez, R. Zivieri, L. Torres, M. Carpentieri, G. Finocchio, Sci. Rep. 4, 6784 (2014). https://doi.org/10.1038/srep06784

    Article  ADS  Google Scholar 

  13. R. Tomasello, V. Puliafito, E. Martinez, A. Manchon, M. Ricci, M. Carpentieri, G. Finocchio, J. Phys. D Appl. Phys. 50, 325302 (2017). https://doi.org/10.1088/1361-6463/aa7a98

    Article  Google Scholar 

  14. B. Göbel, A.F. Schäffer, J. Berakdar, I. Mertig, S.S.P. Parkin, Sci. Rep. 9, 12119 (2019). https://doi.org/10.1038/s41598-019-48617-z

    Article  ADS  Google Scholar 

  15. H. Vakili, J.-W. Xu, W. Zhou, M.N. Sakib, M.G. Morshed, T. Hartnett, Y. Quessab, K. Litzius, C.T. Ma, S. Ganguly, M.R. Stan, P.V. Balachandran, G.S.D. Beach, S.J. Poon, A.D. Kent, A.W. Ghosh, J. Appl. Phys. 130, 070908 (2021). https://doi.org/10.1063/5.0046950

    Article  ADS  Google Scholar 

  16. I.-S. Hong, K.-J. Lee, Appl. Phys. Lett. 115, 072406 (2019). https://doi.org/10.1063/1.5110752

    Article  ADS  Google Scholar 

  17. Y. Huang, W. Kang, X. Zhang, Y. Zhou, W. Zhao, Nanotechnology 28, 08LT02 (2017). https://doi.org/10.1088/1361-6528/aa5838

    Article  Google Scholar 

  18. S. Li, W. Kang, Y. Huang, Y. Zhou, W. Zhao, Nanotechnology 28, 31LT01 (2017). https://doi.org/10.1088/1361-6528/aa7af5

    Article  Google Scholar 

  19. D. Pinna, F. Araujo, J.-V. Kim, V. Cros, D. Querlioz, P. Bessiere, J. Droulez, J. Grollier, Phys. Rev. Appl. 9, 064018 (2018). https://doi.org/10.1103/PhysRevApplied.9.064018

    Article  ADS  Google Scholar 

  20. N. Nagaosa, Y. Tokura, Nat. Nanotechnol. 8, 899 (2013). https://doi.org/10.1038/nnano.2013.243

    Article  ADS  Google Scholar 

  21. J. Iwasaki, M. Mochizuki, N. Nagaosa, Nat. Nanotechnol. 8, 742 (2013). https://doi.org/10.1038/nnano.2013.176

    Article  ADS  Google Scholar 

  22. T. Schulz, R. Ritz, A. Bauer, M. Halder, M. Wagner, C. Franz, C. Pfleiderer, K. Everschor, M. Garst, A. Rosch, Nat. Phys. 8, 301 (2012). https://doi.org/10.1038/nphys2231

    Article  Google Scholar 

  23. C. Reichhardt, D. Ray, C.J. Reichhardt, Phys. Rev. Lett. 114, 217202 (2015). https://doi.org/10.1103/PhysRevLett.114.217202

    Article  ADS  Google Scholar 

  24. C. Reichhardt, C.J. Olsen Reichhardt, New J. Phys. 18, 095005 (2016). https://doi.org/10.1088/1367-2630/18/9/095005

    Article  ADS  Google Scholar 

  25. C. Reichhardt, C.J.O. Reichhardt, J. Phys. Condens. Matter 31, 07LT01 (2019). https://doi.org/10.1088/1361-648X/aaefd7

    Article  Google Scholar 

  26. S.A. Diaz, C. Reichhardt, D.P. Arovas, A. Saxena, C.J.O. Reichhardt, Phys. Rev. Lett. 120, 117203 (2018). https://doi.org/10.1103/PhysRevLett.120.117203

    Article  ADS  Google Scholar 

  27. K. Litzius, I. Lemesh, B. Krüger, P. Bassirian, L. Caretta, K. Richter, F. Büttner, K. Sato, O.A. Tretiakov, J. Förster, R.M. Reeve, M. Weigand, I. Bykova, H. Stoll, G. Schütz, G.S.D. Beach, M. Kläui, Nat. Phys. 13, 170 (2017). https://doi.org/10.1038/nphys4000

    Article  Google Scholar 

  28. J.-V. Kim, M.-W. Yoo, Appl. Phys. Lett. 110, 132404 (2017). https://doi.org/10.1063/1.4979316

    Article  ADS  Google Scholar 

  29. W. Legrand, D. Maccariello, N. Reyren, K. Garcia, C. Moutafis, C. Moreau-Luchaire, S. Collin, K. Bouzehouane, V. Cros, A. Fert, Nano Lett. 17, 2703 (2017). https://doi.org/10.1021/acs.nanolett.7b00649

    Article  ADS  Google Scholar 

  30. ...R. Juge, S.-G. Je, D. de Souza Chaves, L.D. Buda-Prejbeanu, J. Peña-Garcia, J. Nath, I.M. Miron, K.G. Rana, L. Aballe, M. Foerster, F. Genuzio, T.O. Menteş, A. Locatelli, F. Maccherozzi, S.S. Dhesi, M. Belmeguenai, Y. Roussigné, S. Auffret, S. Pizzini, G. Gaudin, J. Vogel, O. Boulle, Phys. Rev. Appl. 12, 044007 (2019). https://doi.org/10.1103/PhysRevApplied.12.044007

    Article  Google Scholar 

  31. A.K.C. Tan, P. Ho, J. Lourembam, L. Huang, H.K. Tan, C.J.O. Reichhardt, C. Reichhardt, A. Soumyanarayanan, Nat. Commun. 12, 4252 (2021). https://doi.org/10.1038/s41467-021-24114-8

    Article  ADS  Google Scholar 

  32. D. Stosic, T.B. Ludermir, M.V. Milošević, Phys. Rev. B 96, 214403 (2017). https://doi.org/10.1103/PhysRevB.96.214403

    Article  ADS  Google Scholar 

  33. R. Gruber, J. Zázvorka, M.A. Brems, D.R. Rodrigues, T. Dohi, N. Kerber, B. Seng, M. Vafaee, K. Everschor-Sitte, P. Virnau, M. Kläui, Nat. Commun. 13, 3144 (2022). https://doi.org/10.1038/s41467-022-30743-4

    Article  ADS  Google Scholar 

  34. C. Reichhardt, C.J.O. Reichhardt, M.V. Milošević, Rev. Mod. Phys. 94, 035005 (2022). https://doi.org/10.1103/RevModPhys.94.035005

    Article  ADS  Google Scholar 

  35. B.L. Brown, U.C. Täuber, M. Pleimling, Phys. Rev. B 97, 020405(R) (2018). https://doi.org/10.1103/PhysRevB.97.020405

    Article  ADS  Google Scholar 

  36. B.L. Brown, U.C. Täuber, M. Pleimling, Phys. Rev. B 100, 024410 (2019). https://doi.org/10.1103/PhysRevB.100.024410

    Article  ADS  Google Scholar 

  37. J. Stidham, M. Pleimling, Phys. Rev. B 102, 144434 (2020). https://doi.org/10.1103/PhysRevB.102.144434

    Article  ADS  Google Scholar 

  38. H. Du, R. Che, L. Kong, X. Zhao, C. Jin, C. Wang, J. Yang, W. Ning, R. Li, C. Jin, X. Chen, J. Zang, Y. Zhang, M. Tian, Nat. Commun. 6, 8504 (2015). https://doi.org/10.1038/ncomms9504

    Article  ADS  Google Scholar 

  39. J. Hagemeister, D. Iaia, E.Y. Vedmedenko, K. von Bergmann, A. Kubetzka, R. Wiesendanger, Phys. Rev. Lett. 117, 207202 (2016). https://doi.org/10.1103/PhysRevLett.117.207202

    Article  ADS  Google Scholar 

  40. W. Kang, Y. Huang, C. Zheng, W. Lv, N. Lei, Y. Zhang, X. Zhang, Y. Zhou, W. Zhao, Sci. Rep. 6, 23164 (2016). https://doi.org/10.1038/srep23164

    Article  ADS  Google Scholar 

  41. P. Lai, G.P. Zhao, H. Tang, N. Ran, S.Q. Wu, J. Xia, W. Zhang, Y. Zhou, Sci. Rep. 7, 45330 (2017). https://doi.org/10.1038/srep45330

    Article  ADS  Google Scholar 

  42. A.O. Leonov, M. Mostovoy, Nat. Commun. 8, 14394 (2017). https://doi.org/10.1038/ncomms14394

    Article  ADS  Google Scholar 

  43. C. Song, C. Jin, J. Wang, H. Xia, J. Wang, Q. Liu, Appl. Phys. Lett. 111, 192413 (2017). https://doi.org/10.1063/1.4994093

    Article  ADS  Google Scholar 

  44. M.-W. Yoo, V. Cros, J.-V. Kim, Phys. Rev. B 95, 184423 (2017). https://doi.org/10.1103/PhysRevB.95.184423

    Article  ADS  Google Scholar 

  45. P.F. Bessarab, G.P. Müller, I.S. Lobanov, F.N. Rybakov, N.S. Kiselev, H. Jónsson, V.M. Uzdin, S. Blügel, L. Bergqvist, A. Delin, Sci. Rep. 8, 3433 (2018). https://doi.org/10.1038/s41598-018-21623-3

    Article  ADS  Google Scholar 

  46. A.F. Schäffer, L. Rózsa, J. Berakdar, E.Y. Vedmedenko, R. Wiesendanger, Commun. Phys. 2, 72 (2019). https://doi.org/10.1038/s42005-019-0176-y

    Article  Google Scholar 

  47. X. Xing, J. Åkerman, Y. Zhou, Phys. Rev. B 101, 214432 (2020). https://doi.org/10.1103/PhysRevB.101.214432

    Article  ADS  Google Scholar 

  48. J.C. Souza, N.P. Vizarim, C.J.O. Reichhardt, C. Reichhardt, P.A. Venegas, Phys. Rev. B 104, 054434 (2021). https://doi.org/10.1103/PhysRevB.104.054434

    Article  ADS  Google Scholar 

  49. K. Ohara, X. Zhang, Y. Chen, Z. Wei, Y. Ma, J. Xia, Y. Zhou, X. Lu, Nano Lett. 21, 4320 (2021). https://doi.org/10.1021/acs.nanolett.1c00865

    Article  ADS  Google Scholar 

  50. J. Mulkers, B. Van Waeyenberge, M.V. Milošević, Phys. Rev. B 95, 144401 (2017). https://doi.org/10.1103/PhysRevB.95.144401

    Article  ADS  Google Scholar 

  51. J. Mulkers, K.M.D. Hals, J. Leliaert, M.V. Milošević, B. Van Waeyenberge, K. Everschor-Sitte, Phys. Rev. B 98, 064429 (2018). https://doi.org/10.1103/PhysRevB.98.064429

    Article  ADS  Google Scholar 

  52. R.M. Menezes, J. Mulkers, C.C. Silva, M.V. Milošević, Phys. Rev. B 99, 104409 (2019). https://doi.org/10.1103/PhysRevB.99.104409

    Article  ADS  Google Scholar 

  53. J. Leliaert, M. Dvornik, J. Mulkers, J. De Clercq, M.V. Milošević, B. Van Waeyenberge, J. Phys. D Appl. Phys. 51, 123002 (2018). https://doi.org/10.1088/1361-6463/aaab1c

    Article  ADS  Google Scholar 

  54. J. Leliaert, P. Gypens, M.V. Milošević, B. Van Waeyenberge, J. Mulkers, J. Phys. D Appl. Phys. 52, 024003 (2019). https://doi.org/10.1088/1361-6463/aae7c1

    Article  ADS  Google Scholar 

  55. S. Pöllath, J. Wild, L. Heinen, T.N.G. Meier, M. Kronseder, L. Tutsch, A. Bauer, H. Berger, C. Pfeiderer, J. Zweck, A. Rosch, C.H. Back, Phys. Rev. Lett. 118, 207205 (2017). https://doi.org/10.1103/PhysRevLett.118.207205

    Article  ADS  Google Scholar 

  56. W. Jiang, X. Zhang, G. Yu, W. Zhang, X. Wang, M.B. Jungfleisch, J.E. Pearson, X. Cheng, O. Heinonen, K.L. Wang, Y. Zhou, A. Hoffmann, S.G.E. te Velthuis, Nat. Phys. 13, 162 (2017). https://doi.org/10.1038/nphys3883

    Article  Google Scholar 

  57. S.-Z. Lin, C. Reichhardt, C.D. Batista, A. Saxena, Phys. Rev. B 87, 214419 (2013). https://doi.org/10.1103/PhysRevB.87.214419

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The code was written and the data collected by JS. Both authors discussed the data. JS wrote the first draft of the manuscript, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Michel Pleimling.

Ethics declarations

Conflict of interest

Partial financial support was received from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Science and Engineering under Award Number DE-SC0002308.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stidham, J., Pleimling, M. Driven magnetic skyrmions in a narrow channel. Eur. Phys. J. Spec. Top. 232, 1835–1842 (2023). https://doi.org/10.1140/epjs/s11734-023-00800-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00800-0

Navigation