Skip to main content
Log in

Drug and temperature influence on the gel state stability of the phospholipid membranes

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The amphiphilic phospholipids have two hydrophobic fatty acids separated by charged hydrophilic head groups. They can form bilayers with the interior fatty acids oriented parallel to each other and with the phospholipid heads facing out in contact with water. In order to avoid the complexity of the natural membranes, these bilayers are used as model membranes. At room temperature the model membranes are characterized by a high degree of order in the gel state and, at higher temperature they pass, by a sudden process, in a less ordered state of liquid crystalline type. This phenomenon depends on the phospholipid type as well as on the nature of the possible impurities and it is conditioned by temperature. Our studies were made for dipalmitoylphophatidylcholine model membranes in which some drugs as gramicidin S and nifedipine were added to establish the drug influence on the main phase transition temperature. Gramicidin S decreases the main phase transition temperature, while nifedipine increases the temperature of the main phase transition of DPPC model membranes. Research of the model membranes near the main phase transition can facilitate the understanding of the destabilization by the drug action mechanism of the biological membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated and analyzed during this study are available from the corresponding author on reasonable request.

References

  1. M. Jackson, H.H. Mantsch, Biomembrane structure from FTIR spectroscopy. Spectrochim. Acta Rev. 15, 53–69 (1993)

    Google Scholar 

  2. M.K. Jain, Introduction to biological membranes, 2nd edn. (Wiley, New York, 1988)

    Google Scholar 

  3. A. Blume, W. Huebner, G. Messner, Fourier transform infrared spectroscopy of 13C=O-labeled phospholipids hydrogen bonding to carbonyl groups. Biochemistry 27(21), 8239–8249 (1988). https://doi.org/10.1021/bi00421a038

    Article  Google Scholar 

  4. E. Egberts, S.-J. Marrink, H.J.C. Berendsen, Molecular dynamics simulation of a phospholipid membrane. Eur. Biophys. J. 22(6), 423–436 (1994). https://doi.org/10.1007/BF00180163

    Article  Google Scholar 

  5. B.G. Akinoglu, M. Gheith, F. Severcan, Thermodynamics study of gramicidin S and dipalmitoylphosphatidylcholine model membrane interactions based on the FTIR spectroscopy. J. Mol. Struct. 565–566, 281–285 (2001). https://doi.org/10.1016/S0022-2860(01)00503-8

    Article  ADS  Google Scholar 

  6. F. Severcan, C. Agheorghiesei, D.O. Dorohoi, Temperature dependence of the phospholipids bilayers stability, studied by FTIR spectroscopy. Rev. Chim. Buc. 59(3), 356–359 (2008). https://doi.org/10.37358/RC.08.3.1762

    Article  Google Scholar 

  7. C. Stan, C.P. Cristescu, F. Severcan, D. Dorohoi, Effect of gramicidin S on the dipalmitoylphosphatidylglycerol thermotropic phase transition in DPPG/GS systems: A mathematical approach. Mol. Cryst. Liq. Cryst. 457, 27–41 (2006). https://doi.org/10.1080/15421400500447116

    Article  Google Scholar 

  8. G.F. Gause, M.G. Brazhnikova, Gramicidin S and its use in the treatment of infected wounds. Nature 154, 703 (1944). https://doi.org/10.1038/154703a0

    Article  ADS  Google Scholar 

  9. N. Izumiya, T. Kato, H. Aoyagi, M. Waki, M. Kondo, Synthetic aspects of biologically active cyclic peptides – gramicidin S and tyrocidines (Halsted Press Book, New York, 1979)

    Google Scholar 

  10. E.J. Prenner, R.N.A.H. Lewis, L.H. Kondejewski, R.S. Hodges, R.N. McElhaney, Differential scanning calorimetric study of the effect of the antimicrobial peptide gramicidin S on the thermotropic phase behavior of phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol lipid bilayer membranes. Biochim. Biophys. Acta Biomembr. 1417(2), 211–223 (1999). https://doi.org/10.1016/S0005-2736(99)00004-8

    Article  Google Scholar 

  11. E.J. Prenner, R.N.A.H. Lewis, R.N. McElhaney, The interaction of the antimicrobial peptide gramicidin S with lipid bilayer model and biological membranes. Biochim. Biophys. Acta Biomembr. 1462(1–2), 201–221 (1999). https://doi.org/10.1016/S0005-2736(99)00207-2

    Article  Google Scholar 

  12. A.L. Lehninger, Biochemistry, 2nd edn. (Worth Publishers, New York, 1975)

    Google Scholar 

  13. K. Lohner, E.J. Prenner, Differential scanning calorimetry and X-ray diffraction study of the specificity of the interaction of antimicrobial peptides with membrane-mimetic systems. Biochim. Biophys. Acta Biomembr. 1462(1–2), 141–156 (1999). https://doi.org/10.1016/S0005-2736(99)00204-7

    Article  Google Scholar 

  14. T. Katsu, H. Kobayashi, T. Hirota, Y. Fujita, K. Sato, U. Nagay, Structure-activity relationship of gramicidin S analogues on membrane permeability. Biochim. Biophys. Acta Biomembr. 899(2), 159–170 (1987). https://doi.org/10.1016/0005-2736(87)90396-8

    Article  Google Scholar 

  15. F. Severcan, H.O. Durmus, F. Eker, B.G. Akinogluy, P.I. Haris, Vitamin D2 modulates melittin-membrane interactions. Talanta 53(1), 205–211 (2000). https://doi.org/10.1016/S0039-9140(00)00453-7

    Article  Google Scholar 

  16. W. Vater, G. Kroneberg, F. Hoffmeister, H. Saller, K. Meng, A. Oberdorf, W. Puls, K. Schlossmann, K. Stoepel, Pharmacology of 4-(2’-nitrophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylic acid dimethyl ester (Nifedipine, BAY a 1040) (in German). Arzneimittelforschung. 22(1), 1–14 (1972)

    Google Scholar 

  17. T.M. Curtis, C.N. Scholfield, Nifedipine blocks Ca2+ store refilling through a pathway not involving L-type Ca2+ channels in rabbit arteriolar smooth muscle. J. Physiol 532(3), 609–623 (2001). https://doi.org/10.1111/j.1469-7793.2001.0609e.x

    Article  Google Scholar 

  18. D.R. Sliskovic, Cardiovascular Drugs, in Drug Discovery: Practices, Processes, and Perspectives, ed. by J.J. Li, E.J. Corey (John Wiley & Sons, Hoboken, 2013) p.141–204

  19. G. Gaviraghi, Case Study of Lacidipine in the Research of New Calcium Antagonists, in Analog-based Drug Discovery. ed. by J. Fischer, C.R. Ganellin (Wiley-VCH, Weinheim, 2006), pp.181–192

    Chapter  Google Scholar 

  20. J.M. Luther, Is there a new dawn for selective mineralocorticoid receptor antagonism? Curr. Opin. Nephrol. Hypertens. 23(5), 456–461 (2014). https://doi.org/10.1097/MNH.00000000000000051

    Article  Google Scholar 

  21. G.M. Petrov, A simple algorithm for spectral line deconvolution. J. Quant. Spectrosc. Radiat. Transf. 72(3), 281–287 (2002). https://doi.org/10.1016/S0022-4073(01)00125-X

    Article  ADS  Google Scholar 

  22. http://www.sytat.com/products/PeakFit/

  23. Spartan’14 for Windows, Macintosh and Linux, Tutorial and User’s Guide, January 10, 2014, available online at http://downloads.wavefun.com/Spartan14Manual.pdf

  24. W.J. Hehre, A guide to molecular mechanics and quantum chemical calculations (Wavefunction Inc., Irvine, 2003)

    Google Scholar 

  25. J.R.L. Arrondo, F.M. Goñi, J.M. Macarulla, Infrared spectroscopy of phosphatidylcholines in aqueous suspension. A study of the phosphate group vibrations. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 794(1), 165–168 (1984). https://doi.org/10.1016/0005-2760(84)90310-2

    Article  Google Scholar 

  26. L.C. Stewart, M. Kates, P.W. Yang, H.H. Mantsch, Intra- and inter-molecular hydrogen bonding in diphytanylglycerol phospholipids: an infrared spectroscopic investigation. Biochem. Cell Biol. 68(1), 266–273 (1990). https://doi.org/10.1139/o90-037

    Article  Google Scholar 

  27. M. Avram, G.D. Mateescu, Infrared Spectroscopy. Applications in Organic Chemistry (in Romanian) (Ed. Tehnică, București, 1966)

  28. A.H. de Vries, A.E. Mark, S.J. Marrink, Molecular dynamics simulation of the spontaneous formation of a small DPPC vesicle in water in atomistic detail. J. Am. Chem. Soc. 126(14), 4488–4489 (2004). https://doi.org/10.1021/ja0398417

    Article  Google Scholar 

  29. A. Lenz, L. Ojamäe, Theoretical IR spectra for water clusters (H2O)n (n = 6–22, 28, 30) and identification of spectral contributions from different H-bond conformations in gaseous and liquid water. J. Phys. Chem. A 110(50), 13388–13393 (2006). https://doi.org/10.1021/jp066372x

    Article  Google Scholar 

  30. F. Korkmaz, F. Severcan, M. Aflori, D.O. Dorohoi, Temperature influence on the dyphalmitoylphosphatidylcholyne——model membranes studied by FTIR. Dig. J. Nanomater. Biostructures 3(2), 55–61 (2008)

    Google Scholar 

  31. J.J. López Cascales, T.F. Otero, B.D. Smith, C. González, M. Márquez, Model of an asymmetric DPPC/DPPS membrane: effect of asymmetry of the lipid properties. A molecular dynamics simulation study. J. Phys. Chem. B 110(5), 2358–2363 (2006). https://doi.org/10.1021/jp0562680

    Article  Google Scholar 

  32. I. Noda, Y. Ozaki, Two-dimensional Correlation Spectroscopy. Applications in Vibrational and Optical Spectroscopy (John Wiley & Sons, Chichester, 2004)

  33. F. Severcan, D.O. Dorohoi, FTIR studies of temperature influence on the DPPG model membrane. J. Mol. Struct. 887(1–3), 117–121 (2008). https://doi.org/10.1016/j.molstruc.2008.02.039

    Article  ADS  Google Scholar 

Download references

Funding

The study was funded by Romanian Ministry of Research, Inovation and Digitization (Grant no. 11PFE/30.12.2021).

Author information

Authors and Affiliations

Authors

Contributions

The authors equally contributed to all activities related to this article.

Corresponding author

Correspondence to Dan G. Dimitriu.

Ethics declarations

Conflict of interest

Authors are thankful to Romanian Ministry of Research, Innovation and Digitization, within Program 1—Development of the national RD system, Subprogram 1.2—Institutional Performance—RDI excellence funding projects, Contract no. 11PFE/30.12.2021, for financial support.

Additional information

IMA10 - Interfacial Fluid Dynamics and Processes. Guest editors: Rodica Borcia, Sebastian Popescu, Ion Dan Borcia.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimitriu, D.G., Dorohoi, D.O. Drug and temperature influence on the gel state stability of the phospholipid membranes. Eur. Phys. J. Spec. Top. 232, 427–433 (2023). https://doi.org/10.1140/epjs/s11734-023-00784-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00784-x

Navigation