Skip to main content
Log in

Classical mechanics on fractal curves

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Fractal analogue of Newton, Lagrange, Hamilton, and Appell’s mechanics are suggested. The fractal \(\alpha\)-velocity and \(\alpha\)-acceleration are defined in order to obtain the Langevin equation on fractal curves. Using the Legendre transformation, Hamilton’s mechanics on fractal curves is derived for modeling a non-conservative system on fractal curves with fractional dimensions. Fractal differential equations have solutions that are non-differentiable in the sense of ordinary derivatives and explain space and time with fractional dimensions. The illustrated examples with graphs present the details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. B.B. Mandelbrot, The Fractal Geometry of Nature (WH Freeman, New York, 1982)

    MATH  Google Scholar 

  2. M.F. Barnsley, Fractals Everywhere (Academic Press, New York, 2014)

    MATH  Google Scholar 

  3. A. Bunde, S. Havlin, Fractals in Science (Springer, New York, 2013)

    MATH  Google Scholar 

  4. R. DiMartino, W. O. Urbina, Excursions on Cantor-like sets. arXiv:1411.7110

  5. G.A. Edgar, Integral, Probability, and Fractal Measures (Springer, New York, 1998)

    Book  MATH  Google Scholar 

  6. C.A. Rogers, Hausdorff Measures (Cambridge University Press, Cambridge, 1998)

    MATH  Google Scholar 

  7. M.L. Lapidus, G. Radunović, D. Žubrinić, Fractal Zeta Functions and Fractal Drums (Springer, New York, 2017)

    Book  MATH  Google Scholar 

  8. M.L. Lapidus, J.J. Sarhad, Dirac operators and geodesic metric on the harmonic Sierpinski gasket and other fractal sets. J. Noncommut. Geom. 8(4), 947–985 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. T. Sandev, A. Iomin, V. Méndez, Lévy processes on a generalized fractal comb. J. Phys. A: Math. Theor. 49(35), 355001 (2016)

    Article  MATH  Google Scholar 

  10. N. Riane, C. David, Optimal control of the heat equation on a fractal set. Optim. Eng. 22(4), 2263–2289 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Goldstein, Random walks and diffusions on fractals, in: Percolation theory and ergodic theory of infinite particle systems, Springer, 1987, pp. 121–129

  12. M. Fukushima, T. Shima, On a spectral analysis for the Sierpinski gasket. Potential Anal. 1(1), 1–35 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. M.T. Barlow, E.A. Perkins, Brownian motion on the Sierpinski gasket. Probab. Theory Rel. 79(4), 543–623 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. V. Balakrishnan, Random walks on fractals. Mater. Sci. Eng., B 32(3), 201–210 (1995)

    Article  Google Scholar 

  15. J. Kigami, A harmonic calculus on the Sierpinski spaces. Japan Journal of applied mathematics 6(2), 259–290 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. A.K. Golmankhaneh, S.M. Nia, Laplace equations on the fractal cubes and casimir effect. Eur. Phys. J. Special Topics 230(21), 3895–3900 (2021)

    Article  ADS  Google Scholar 

  17. T. Shima, On eigenvalue problems for the random walks on the sierpinski pre-gaskets. Jpn. J. Ind. Appl. Math. 8(1), 127–141 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. J. Kigami, Analysis on Fractals, Cambridge University Press, 2001

  19. K. Falconer, Fractal geometry: mathematical foundations and applications, John Wiley & Sons, 2004

  20. T. Priyanka, A. Agathiyan, A. Gowrisankar, Weyl–marchaud fractional derivative of a vector valued fractal interpolation function with function contractivity factors, The Journal of Analysis (2022) 1–33

  21. C. Kavitha, T. Priyanka, C. Serpa, A. Gowrisankar, Fractional calculus for multivariate vector-valued function and fractal function, in: Applied Fractional Calculus in Identification and Control, Springer, 2022, pp. 1–23

  22. S. Banerjee, D. Easwaramoorthy, A. Gowrisankar, Fractional calculus on fractal functions, in: Fractal Functions, Dimensions and Signal Analysis, Springer, 2021, pp. 37–60

  23. A. K. Golmankhaneh, K. Welch, T. Priyanka, A. Gowrisankar, Fractal calculus, in: Frontiers of Fractal Analysis Recent Advances and Challenges, CRC Press, 2022, pp. 67–82

  24. R. S. Strichartz, Differential Equations on Fractals, Princeton University Press, 2018

  25. M. Kesseböhmer, T. Samuel, H. Weyer, A note on measure-geometric Laplacians. Monatsh. Math. 181(3), 643–655 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. F.H. Stillinger, Axiomatic basis for spaces with noninteger dimension. J. Math. Phys. 18(6), 1224–1234 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. U. Freiberg, M. Zähle, Harmonic calculus on fractals-a measure geometric approach I. Potential analysis 16(3), 265–277 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. L. Nottale, Fractal space-time and microphysics: towards a theory of scale relativity, World Scientific, 1993

  29. P. Biler, T. Funaki, W.A. Woyczynski, Fractal burgers equations. J. Differential Equations 148(1), 9–46 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. A. Parvate, A.D. Gangal, Calculus on fractal subsets of real line-I: Formulation. Fractals 17(01), 53–81 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Parvate, S. Satin, A. Gangal, Calculus on fractal curves in \(\mathbb{R} ^{n}\). Fractals 19(01), 15–27 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. A. K. Golmankhaneh, Fractal Calculus and its Applications, World Scientific, 2022

  33. S.E. Satin, A. Parvate, A. Gangal, Fokker-planck equation on fractal curves. Chaos, Solitons & Fractals 52, 30–35 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. S. Satin, A. Gangal, Langevin equation on fractal curves. Fractals 24(03), 1650028 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. S. Satin, A. Gangal, Random walk and broad distributions on fractal curves. Chaos, Solitons & Fractals 127, 17–23 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. A.K. Golmankhaneh, K. Welch, Equilibrium and non-equilibrium statistical mechanics with generalized fractal derivatives: A review. Mod. Phys. Lett. A 36(14), 2140002 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. A. Gowrisankar, A.K. Golmankhaneh, C. Serpa, Fractal calculus on fractal interpolation functions. Fractal Fract. 5(4), 157 (2021)

    Article  Google Scholar 

  38. A.K. Golmankhaneh, C. Tunç, Stochastic differential equations on fractal sets. Stochastics 92(8), 1244–1260 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. A.K. Golmankhaneh, A. Fernandez, Random variables and stable distributions on fractal cantor sets. Fractal Fract. 3(2), 31 (2019)

    Article  Google Scholar 

  40. A.K. Golmankhaneh, C. Tunç, H. Şevli, Hyers-Ulam stability on local fractal calculus and radioactive decay. Eur. Phys. J. Special Topics 230(21), 3889–3894 (2021)

    Article  ADS  Google Scholar 

  41. A. K. Golmankhaneh, K. Kamal Ali, R. Yilmazer, K. Welch, Electrical circuits involving fractal time, Chaos 31 (3) (2021) 033132

  42. A. K. Golmankhaneh, K. Kamal Ali, R. Yilmazer, M. Kaabar, Local fractal Fourier transform and applications, Comput. Methods Differ. Equ. 10 (3) (2021) 595–607

  43. R. Banchuin, Nonlocal fractal calculus based analyses of electrical circuits on fractal set, COMPEL - Int. J. Comput. Math. Electr. Electron. Eng. 41(1), 528–549 (2021)

    Article  Google Scholar 

  44. R. Banchuin, Noise analysis of electrical circuits on fractal set, COMPEL - Int. J. Comput. Math. Electr. Electron. Eng. 41(5), 1464–1490 (2022)

    Article  Google Scholar 

  45. S. Vrobel, Fractal Time, World Scientific, 2011

  46. K. Welch, A Fractal Topology of Time: Deepening into Timelessness, Fox Finding Press, 2020

  47. A. Parvate, A. Gangal, Calculus on fractal subsets of real line-II: Conjugacy with ordinary calculus. Fractals 19(03), 271–290 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. H. Goldstein, C. Poole, J. Safko, Classical mechanics, Pearson, 2002

  49. L. N. Hand, J. D. Finch, Analytical mechanics, Cambridge University Press, 1998

  50. E.A. Desloge, The Gibbs-Appell equations of motion. Am. J. Phys. 56(9), 841–846 (1988)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Khalili Golmankhaneh.

Additional information

S.I. : Framework of Fractals in Data Analysis: Theory and Interpretation. Guest editors: Santo Banerjee, A. Gowrisankar.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golmankhaneh, A.K., Welch, K., Tunç, C. et al. Classical mechanics on fractal curves. Eur. Phys. J. Spec. Top. 232, 991–999 (2023). https://doi.org/10.1140/epjs/s11734-023-00775-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00775-y

Navigation