Skip to main content
Log in

RC-MHM: reservoir computing with a 2D memristive hyperchaotic map

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

High-performance reservoir computing has to rely on its highly rich internal dynamic. Chaotic systems based on memristors are widely employed in reservoir computing because of their wealthy nonlinear dynamic behaviors, but there are few studies and applications related to discrete memristor models compared to continuous memristor models. This paper proposes a brand new discrete memristor model, and a two-dimensional hyper chaotic maps is constructed by coupling the discrete memristor model and a sinusoidal function. The map has rich nonlinear dynamic behaviors which cater to the need for RC, therefore, we apply this map to enhance the richness of the state of the reservoir, and test the reservoir’s computing capability by the emulation of NARMA and Santa Fe time series prediction task. For this purpose, using the method of the single node with delayed feedback, the proposed reservoir can avoid the selection of meta-parameters, and fully exploits the time dependence of the map states to replace the interactions between the internal nodes. As far as we know, this is the first time that time series analysis using the discrete memristive map, and the experimental results demonstrate that the hyperchaotic map based on the discrete memristor can effectively optimize the performance of the reservoir computing. Moreover, the proposed reservoir shows several attractive features including simple design, ease to calculate, and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. L. Chua, Memristor-the missing circuit element. IEEE Trans. Circ. Syst. 18(5), 507–519 (1971). https://doi.org/10.1109/TCT.1971.1083337

    Article  Google Scholar 

  2. F. Corinto, M. Forti, Memristor circuits: bifurcations without parameters. IEEE Trans. Circ. Syst. I-Regul. Pap. 64(6), 1540–1551 (2017). https://doi.org/10.1109/TCSI.2016.2642112

    Article  Google Scholar 

  3. S. Sun, H. Shi, S. Duan, L. Wang, Memristor-based time-delay hyperchaotic system with circuit simulation and image encryption. Phys. Scr. 97(3), 035204 (2022). https://doi.org/10.1088/1402-4896/ac4cfb

    Article  ADS  Google Scholar 

  4. H. Shi, D. Yan, L. Wang, S. Duan, A novel memristor-based chaotic image encryption algorithm with hash process and s-box. Eur. Phys. J.-Spec. Top. (2021). https://doi.org/10.1140/epjs/s11734-021-00365-w

    Article  Google Scholar 

  5. Y. Peng, K. Sun, S. He, A discrete memristor model and its application in hénon map. Chaos Solitons Fractals 137, 109873 (2020). https://doi.org/10.1016/j.chaos.2020.109873

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Kong, C. Li, S. He, S. Çiçek, Q. Lai, A memristive map with coexisting chaos and hyperchaos. Chin. Phys. B 30(11), 110502 (2021). https://doi.org/10.1088/1674-1056/abf4fb

    Article  ADS  Google Scholar 

  7. H. Li, Z. Hua, H. Bao, L. Zhu, M. Chen, B. Bao, Two-dimensional memristive hyperchaotic maps and application in secure communication. IEEE Trans. Ind. Electron. 68(10), 9931–9940 (2020). https://doi.org/10.1109/TIE.2020.3022539

    Article  Google Scholar 

  8. Y. Deng, Y. Li, A 2d hyperchaotic discrete memristive map and application in reservoir computing. IEEE Trans. Circ. Syst. II-Express Briefs (2021). https://doi.org/10.1109/TCSII.2021.3118646

    Article  Google Scholar 

  9. H. Jaeger, The “echo state’’ approach to analysing and training recurrent neural networks-with an erratum note. Bonn German.: German Natl. Res. Center Inf. Technol. GMD Tech. Rep. 148(34), 13 (2001)

    Google Scholar 

  10. B. Schrauwen, D. Verstraeten, J. Van Campenhout, An overview of reservoir computing: theory, applications and implementations. In Proceedings of the 15th European Symposium on Artificial Neural Networks. p. 471–482 2007, pages 471–482, (2007). http://hdl.handle.net/1854/LU-416607

  11. M.R.E.U. Shougat, X.F. Li, T. Mollik, E. Perkins, A hopf physical reservoir computer. Sci. Rep. 11(1), 1–13 (2021). https://doi.org/10.1038/s41598-021-98982-x

    Article  ADS  Google Scholar 

  12. K. Nakajima, H. Hauser, T. Li, R. Pfeifer, Information processing via physical soft body. Sci. Rep. 5(1), 1–11 (2015). https://doi.org/10.1038/srep10487

    Article  Google Scholar 

  13. Y. Zhong, J. Tang, X. Li, B. Gao, H. Qian, W. Huaqiang, Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing. Nat. Commun. 12(1), 1–9 (2021). https://doi.org/10.1038/s41467-020-20692-1

    Article  ADS  Google Scholar 

  14. New motor neuroscience and brain-machine interfaces, D.J. O’shea, E. Trautmann, C. Chandrasekaran, S. Stavisky, J. C. Kao, M. Sahani, S. Ryu, K. Deisseroth, and K. V. Shenoy, The need for calcium imaging in nonhuman primates. Exp. Neurol. 287, 437–451 (2017). https://doi.org/10.1016/j.expneurol.2016.08.003

  15. W. Sun, N. Akashi, Y. Kuniyoshi, K. Nakajima, The 32nd 2021 international symposium on micro-nanomechatronics and human science. pages 1–6, (2021). https://doi.org/10.1109/MHS53471.2021.9767178

  16. M. Cucchi, C. Gruener, L. Petrauskas, P. Steiner, H. Tseng, A. Fischer, B. Penkovsky, C. Matthus, P. Birkholz, H. Kleemann, K. Leo, Reservoir computing with biocompatible organic electrochemical networks for brain-inspired biosignal classification. Sci. Adv. 7(34), eabh0693 (2021). https://doi.org/10.1126/sciadv.abh0693

    Article  ADS  Google Scholar 

  17. S.J. Weddell, S. Ayyagari, R.D. Jones, Reservoir computing approaches to microsleep detection. J. Neural Eng. 18(4), 046021 (2021). https://doi.org/10.1088/1741-2552/abcb7f

    Article  ADS  Google Scholar 

  18. M. Lukoševičius, A practical guide to applying echo state networks. In Neural Networks: Tricks of the Trade, pages 659–686. Springer, (2012). https://doi.org/10.1007/978-3-642-35289-8_36

  19. G. Dion, S. Mejaouri, J. Sylvestre, Reservoir computing with a single delay-coupled non-linear mechanical oscillator. J. Appl. Phys. 124(15), 152132 (2018). https://doi.org/10.1063/1.5038038

    Article  ADS  Google Scholar 

  20. J. Jensen , G. Tufte, Reservoir computing with a chaotic circuit. In Proceedings of the European Conference on Artificial Life 2017. MIT Press, (2017). http://hdl.handle.net/11250/2456968

  21. L. Appeltant, M. Cornelles Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C.R. Mirasso, I. Fischer, Information processing using a single dynamical node as complex system. Nat. Commun. 2(1), 1–6 (2011). https://doi.org/10.1038/ncomms1476

    Article  Google Scholar 

  22. Y. Suzuki, Q. Gao, K.C. Pradel, K. Yasuoka, N. Yamamoto, Natural quantum reservoir computing for temporal information processing. Sci. Rep. 12(1), 1–15 (2022). https://doi.org/10.1038/s41598-022-05061-w

    Article  Google Scholar 

  23. S.P. Adhikari, M.P. Sah, H. Kim, L.O. Chua, Three fingerprints of memristor. IEEE Trans. Circ. Syst. I-Regul. Pap. 60(11), 3008–3021 (2013). https://doi.org/10.1109/TCSI.2013.2256171

    Article  Google Scholar 

  24. D.R. Rigney, A.L. Goldberger, W.C. Ocasio, Y. Ichimaru, G.B. Moody, R.G. Mark, Multichannel physiological data description and analysis. Time Series Prediction: Forecasting the Future and Understanding the Past, pages 697–709, (1994). https://doi.org/10.9774/GLEAF.978-1-909493-38-4_2

  25. Y. Ichimaru, G.B. Moody, Development of the polysomnographic database on cd-rom. Psychiatry Clin. Neurosci. 53(2), 175–177 (1999). https://doi.org/10.1046/j.1440-1819.1999.00527.x

    Article  Google Scholar 

  26. A.F. Atiya, A.G. Parlos, New results on recurrent network training: unifying the algorithms and accelerating convergence. IEEE Trans. Neural Netw. 11(3), 697–709 (2000). https://doi.org/10.1109/72.846741

    Article  Google Scholar 

  27. T. Liu, J. Mou, L. Xiong, X. Han, H. Yan, Y. Cao, Hyperchaotic maps of a discrete memristor coupled to trigonometric function. Phys. Scr. 96(12), 125242 (2021). https://doi.org/10.1088/1402-4896/ac3153

    Article  ADS  Google Scholar 

  28. Y. Peng, S. He, K. Sun, A higher dimensional chaotic map with discrete memristor. AEU-Int. J. Electron. Commun. 129, 153539 (2021). https://doi.org/10.1016/j.aeue.2020.153539

    Article  Google Scholar 

  29. M. Ma, Y. Yang, Z. Qiu, Y. Peng, Y. Sun, Z. Li, M. Wang, A locally active discrete memristor model and its application in a hyperchaotic map. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-021-07132-5

    Article  Google Scholar 

  30. A. Elbedwehy, A. El-Mohandes, A. Elnakib, M. Abou-Elsoud, FPGA-based reservoir computing system for ECG denoising. Microprocess. Microsyst. (2022). https://doi.org/10.1016/j.micpro.2022.104549

    Article  Google Scholar 

  31. Z. Liang, S. He, H. Wang, K. Sun, A novel discrete memristive chaotic map. Eur. Phys. J. Plus. 137(3) (2022). https://doi.org/10.1140/epjp/s13360-022-02512-1

  32. Q. Lai, L. Yang, Y. Liu, Design and realization of discrete memristive hyperchaotic map with application in image encryption. Chaos Solitons Fractals (2022). https://doi.org/10.1016/j.chaos.2022.112781

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 62076208, 62076207, U20A20227), and in part by the National Key R &D Program of China (Grant No. 2018YFB1306600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidan Wang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, J., Ji’e, M., Xu, S. et al. RC-MHM: reservoir computing with a 2D memristive hyperchaotic map. Eur. Phys. J. Spec. Top. 232, 663–671 (2023). https://doi.org/10.1140/epjs/s11734-023-00773-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00773-0

Navigation