Skip to main content
Log in

Electron heating and radiation in high aspect ratio sub-micron plasma generated by an ultrafast Bessel pulse within a solid dielectric

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

When propagating inside dielectrics, an ultrafast Bessel beam creates a high aspect ratio cylinder of plasma with nanometric diameter that extends over several tens of micrometers to centimeters. We analyze the interaction between the intense ultrafast laser pulse and the plasma rod using particle-in-cell simulations. We show that electrons are heated and accelerated up to keV energies via transit acceleration inside the resonance lobes in the vicinity of the critical surface and compute their radiation pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability statement

Data will be made available on reasonable request.

References

  1. R.R. Gattass, E. Mazur, Femtosecond laser micromachining in transparent materials. Nat. Photon. 2(4), 219–225 (2008)

    Article  ADS  Google Scholar 

  2. B. Rethfeld, D.S. Ivanov, M.E. Garcia, S.I. Anisimov, Modelling ultrafast laser ablation. J. Phys. D Appl. Phys. 50(19), 193001 (2017). https://doi.org/10.1088/1361-6463/50/19/193001

    Article  ADS  Google Scholar 

  3. K. Sokolowski-Tinten, J. Bialkowski, M. Boing, A. Cavalleri, D. von der Linde, Thermal and nonthermal melting of gallium arsenide after femtosecond laser excitation. Phys. Rev. B 58(18), 11805–11808 (1998). https://doi.org/10.1103/physrevb.58.r11805

    Article  ADS  Google Scholar 

  4. S.K. Sundaram, E. Mazur, Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nat. Mater. 1(4), 217–224 (2002). https://doi.org/10.1038/nmat767

    Article  ADS  Google Scholar 

  5. K. Engelhorn, V. Recoules, B.I. Cho, B. Barbrel, S. Mazevet, D.M. Krol, R.W. Falcone, P.A. Heimann, Electronic structure of warm dense silicon dioxide. Phys. Rev. B. 91(21), 214305 (2015). https://doi.org/10.1103/physrevb.91.214305

    Article  ADS  Google Scholar 

  6. K. Falk, Experimental methods for warm dense matter research. High Power Laser Sci. Eng. 6, 59 (2018). https://doi.org/10.1017/hpl.2018.53

    Article  Google Scholar 

  7. T. Guillot, Interiors of giant planets inside and outside the solar system. Science 286(5437), 72–77 (1999). https://doi.org/10.1126/science.286.5437.72

    Article  ADS  Google Scholar 

  8. E.N. Glezer, E. Mazur, Ultrafast-laser driven micro-explosions in transparent materials. Appl. Phys. Lett. 71(7), 882 (1997). https://doi.org/10.1063/1.119677

    Article  ADS  Google Scholar 

  9. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E.G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, V.T. Tikhonchuk, Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures. Phys. Rev. Lett. 96(16), 166101 (2006). https://doi.org/10.1103/physrevlett.96.166101

    Article  ADS  Google Scholar 

  10. A. Vailionis, E.G. Gamaly, V. Mizeikis, W. Yang, A.V. Rode, S. Juodkazis, Evidence of superdense aluminium synthesized by ultrafast microexplosion. Nat. Commun. 2, 445 (2011). https://doi.org/10.1038/ncomms1449

    Article  ADS  Google Scholar 

  11. L.A. Smillie, M. Niihori, L. Rapp, B. Haberl, J.S. Williams, J.E. Bradby, C.J. Pickard, A.V. Rode, Exotic silicon phases synthesized through ultrashort laser-induced microexplosion: characterization with raman microspectroscopy. Phys. Rev. Mater. 4(9), 093803 (2020). https://doi.org/10.1103/physrevmaterials.4.093803

    Article  Google Scholar 

  12. K. Mishchik, B. Chassagne, C. Javaux-Léger, C. Hönninger, E. Mottay, R. Kling, J. Lopez, Dash line glass- and sapphire-cutting with high power USP laser. In: A. Heisterkamp, P.R. Herman, M. Meunier, S. Nolte (eds.) Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XVI, Proc. SPIE 9740, p. 97400 (2016). https://doi.org/10.1117/12.2209274

  13. R. Meyer, M. Jacquot, R. Giust, J. Safioui, L. Rapp, L. Furfaro, P.-A. Lacourt, J.M. Dudley, F. Courvoisier, Single-shot ultrafast laser processing of high-aspect-ratio nanochannels using elliptical Bessel beams. Opt. Lett. 42(21), 4307 (2017). https://doi.org/10.1364/ol.42.004307

    Article  ADS  Google Scholar 

  14. M. Jenne, D. Flamm, T. Ouaj, J. Hellstern, J. Kleiner, D. Grossmann, M. Koschig, M. Kaiser, M. Kumkar, S. Nolte, High-quality tailored-edge cleaving using aberration-corrected Bessel-like beams. Opt. Lett. 43(13), 3164 (2018). https://doi.org/10.1364/ol.43.003164

    Article  ADS  Google Scholar 

  15. R. Meyer, L. Froehly, R. Giust, J.D. Hoyo, L. Furfaro, C. Billet, F. Courvoisier, Extremely high-aspect-ratio ultrafast Bessel beam generation and stealth dicing of multi-millimeter thick glass. Appl. Phys. Lett. 114(20), 201105 (2019). https://doi.org/10.1063/1.5096868

    Article  ADS  Google Scholar 

  16. K. Ardaneh, R. Meyer, M. Hassan, R. Giust, C. Xie, B. Morel, I. Ouadghiri-Idrissi, L. Furfaro, L. Froehly, A. Couairon, G. Bonnaud, F. Courvoisier, High energy density plasma mediated by collisionless resonance absorption inside dielectrics. arXiv (2021). https://doi.org/10.48550/ARXIV.2109.00803. arXiv:2109.00803

  17. J. Durnin, J.J. Miceli, J.H. Eberly, Diffraction-free beams. Phys. Rev. Lett. 58(15), 1499–1501 (1987). https://doi.org/10.1103/physrevlett.58.1499

    Article  ADS  Google Scholar 

  18. L. Rapp, R. Meyer, R. Giust, L. Furfaro, M. Jacquot, P.A. Lacourt, J.M. Dudley, F. Courvoisier, High aspect ratio micro-explosions in the bulk of sapphire generated by femtosecond bessel beams. Sci. Rep. 6, 34286 (2016)

    Article  ADS  Google Scholar 

  19. K. Ardaneh, R. Giust, B. Morel, F. Courvoisier, Generation of a Bessel beam in FDTD using a cylindrical antenna. Opt. Express 28(3), 2895–2908 (2020). https://doi.org/10.1364/OE.385413

    Article  ADS  Google Scholar 

  20. T.D. Arber, K. Bennett, C.S. Brady, A. Lawrence-Douglas, M.G. Ramsay, N.J. Sircombe, P. Gillies, R.G. Evans, H. Schmitz, A.R. Bell, C.P. Ridgers, Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Phys. Control. Fusion 57(11), 113001 (2015). https://doi.org/10.1088/0741-3335/57/11/113001

    Article  ADS  Google Scholar 

  21. K. Ardaneh, R. Meyer, M. Hassan, R. Giust, B. Morel, A. Couairon, G. Bonnaud, F. Courvoisier, Femtosecond laser-induced sub-wavelength plasma inside dielectrics: I. Field enhancement. Phys. Plasmas 29(7), 072715 (2022). https://doi.org/10.1063/5.0086708

    Article  ADS  Google Scholar 

  22. P. Boucher, J.D. Hoyo, C. Billet, O. Pinel, G. Labroille, F. Courvoisier, Generation of high conical angle Bessel–Gauss beams with reflective axicons. Appl. Opt. 57(23), 6725 (2018). https://doi.org/10.1364/ao.57.006725

    Article  ADS  Google Scholar 

  23. J.P. Holloway, J.J. Dorning, Undamped plasma waves. Phys. Rev. A 44, 3856–3868 (1991). https://doi.org/10.1103/PhysRevA.44.3856

    Article  ADS  Google Scholar 

  24. C.S. Shen, Transit acceleration of charged particles in an inhomogeneous electromagnetic field. Astrophys. J. 141, 1091 (1965). https://doi.org/10.1086/148198

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. G.J. Morales, Y.C. Lee, Effect of localized electric fields on the evolution of the velocity distribution function. Phys. Rev. Lett. 33, 1534–1537 (1974). https://doi.org/10.1103/PhysRevLett.33.1534

    Article  ADS  Google Scholar 

  26. C.P. DeNeef, J.S. DeGroot, Electron acceleration by a localized electric field. Phys. Fluids 20(7), 1074–1079 (1977). https://doi.org/10.1063/1.861993

    Article  ADS  Google Scholar 

  27. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1998)

    MATH  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 682032-PULSAR), Région Bourgogne Franche-Comté, I-SITE BFC project (contract ANR-15-IDEX-0003), and the EIPHI Graduate School (ANR-17-EURE-0002). We acknowledge the support of PRACE HPC resources under the Project “PULSARPIC” (PRA19_4980 and RA5614), and GENCI resources under projects A0070511001 and A0090511001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francois Courvoisier.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ardaneh, K., Giust, R., Charpin, PJ. et al. Electron heating and radiation in high aspect ratio sub-micron plasma generated by an ultrafast Bessel pulse within a solid dielectric. Eur. Phys. J. Spec. Top. 232, 2247–2252 (2023). https://doi.org/10.1140/epjs/s11734-022-00751-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00751-y

Navigation