Skip to main content
Log in

Characterization of digital modulations using the phase diagram analysis

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Digital modulation identification is a challenging and important operation in the security communication field. Identifying properly a digital modulation and its parameters is a key operation in many applications, such as cognitive radio, communication intelligence and dynamic spectrum allocation. However, traditional methods face a stalemate in which the accuracy of the identification process is quite low. Therefore, new descriptors are needed as an alternative solution or to complement the existing ones. Using a new method from the field of nonlinear dynamic systems, namely the phase diagram representation, we want to extract some features to help recognizing the type of used modulations. This method can be used even in noisy backgrounds, with the help of an additional processing algorithm, to give important information about the signal and the used modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability statement

The data set generated and analysed during the current study is available from the corresponding author on reasonable request.

References

  1. D.H. Al-Nuaimi, I.A. Hashim, I.S. Zainal Abidin, L.B. Salman, N.A. Mat Isa, Performance of feature-based techniques for automatic digital modulation recognition and classification—a review. Electronics 8, 1407 (2019)

    Article  Google Scholar 

  2. J.L. Xu, W. Su, M. Zhou, Likelihood-ratio approaches to automatic modulation classification. IEEE Trans. Syst. Man Cybern. C 41, 455–469 (2011)

    Article  Google Scholar 

  3. A. Hazza, M. Shoaib, S.A. Alshebeili, A. Fahad, An overview of feature-based methods for digital modulation classification, in 2013 1st International Conference on Communications, Signal Processing, and Their Applications (ICCSPA). (IEEE, Sharjah, 2013), pp. 1–6

  4. O.A. Dobre, A. Abdi, Y. Bar-Ness, W. Su, Survey of automatic modulation classification techniques: classical approaches and new trends. IET Commun. 1, 137 (2007)

    Article  Google Scholar 

  5. M. Pedzisz, A. Mansour, Automatic modulation recognition of MPSK signals using constellation rotation and its 4th order cumulant. Digit. Signal Process. 15, 295–304 (2005)

    Article  Google Scholar 

  6. K.N. Haq, A. Mansour, S. Nordholm, Classification of digital modulated signals based on time frequency representation, in 2010 4th International Conference on Signal Processing and Communication Systems. (IEEE, Gold Coast, Australia, 2010), pp. 1–5

  7. A. Digulescu, C. Ioana, I. Candel, A. Serbanescu, On the recognitions capabilities of modulated signals in phase diagram domain, in 2018 International Conference on Communications (COMM). (IEEE, Bucharest, 2018), pp. 177–180

  8. A. Digulescu, I. Murgan, C. Ioana, I. Candel, A. Serbanescu, Applications of transient signal analysis using the concept of recurrence plot analysis, in Recurrence Plots and Their Quantifications: Expanding Horizons. ed. by C.L. Webber, C. Ioana, N. Marwan (Springer International Publishing, Cham, 2016), pp.19–38

    Chapter  Google Scholar 

  9. M.J. de-Ridder-de-Groote, R. Prasad, J.H. Bons, Analysis of new methods for broadcasting digital data to mobile terminals over an FM-channel. IEEE Trans. Broadcast 40, 29–37 (1994)

    Article  Google Scholar 

  10. J. Song, Y. Wang, Y. Liu, Iterative interpolation for parameter estimation of LFM signal based on fractional Fourier transform. Circuits Syst. Signal Process. 32, 1489–1499 (2013)

    Article  MathSciNet  Google Scholar 

  11. S. Lo, B. Peterson, P. Enge, P. Swaszek, Loran data modulation: extensions and examples. IEEE Trans. Aerosp. Electron. Syst. 43, 628–644 (2007)

    Article  ADS  Google Scholar 

  12. J.P. Zbilut, C.L. Webber, Embeddings and delays as derived from quantification of recurrence plots. Phys. Lett. A 171, 199–203 (1992)

    Article  ADS  Google Scholar 

  13. H. Sabelli, A. Sugerman, L. Kovacevic, L. Kauffman, L. Carlson-Sabelli, M. Patel, J. Konecki, Bios data analyzer. Nonlinear Dyn. Psychol. Life Sci. 9, 505–538 (2005)

    Google Scholar 

  14. J.-P. Eckmann, S.O. Kamphorst, D. Ruelle, Recurrence plots of dynamical systems. Europhys. Lett. 4, 973–977 (1987)

    Article  ADS  Google Scholar 

  15. H. Kantz, T. Schreiber, Nonlinear Time Series Analysis (Cambridge Univ. Press, Cambridge, 2010)

    MATH  Google Scholar 

  16. N. Marwan, M. Carmenromano, M. Thiel, J. Kurths, Recurrence plots for the analysis of complex systems. Phys. Rep. 438, 237–329 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  17. C. Ioana, A. Digulescu, A. Serbanescu, I. Candel, F.-M. Birleanu, Recent advances in non-stationary signal processing based on the concept of recurrence plot analysis, in Translational Recurrences. ed. by N. Marwan, M. Riley, A. Giuliani, C.L. Webber (Springer International Publishing, Cham, 2014), pp.75–93

    Chapter  Google Scholar 

  18. R. Scripcaru, D. Nastasiu, A. Digulescu, D. Stanescu, C. Ioana, A. Serbanescu, On the potential of phase diagram analysis to identify the wide band modulations, in 2020 13th International Conference on Communications (COMM). (IEEE, Bucharest, Romania, 2020), pp. 55–58

  19. D. Kopitz, B. Marks, RDS, the Radio Data System (Artech House, Boston, 1999)

    Google Scholar 

  20. S. Lo, B. Peterson, P. Enge, P. Swaszek, Loran data modulation: extensions and examples. IEEE Trans. Aerosp. Electron. Syst. 43, 628–644 (2007)

    Article  ADS  Google Scholar 

  21. N. Saulig, Ž Milanović, C. Ioana, A local entropy-based algorithm for information content extraction from time-frequency distributions of noisy signals. Digit. Signal Process. 70, 155–165 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to AID-DGA (l’Agence de l’Innovation de Défense à la Direction Générale de l’Armement – Ministère des Armées) & ANR (Agence Nationale de le Recherche en France) for supporting our ANR-ASTRID – Project (ANR-19-ASTR-0005-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Stanescu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanescu, D., Nastasiu, D., Ioana, C. et al. Characterization of digital modulations using the phase diagram analysis. Eur. Phys. J. Spec. Top. 232, 187–199 (2023). https://doi.org/10.1140/epjs/s11734-022-00744-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00744-x

Navigation