Skip to main content
Log in

Applying recurrence time entropy to identify changes in event-related potentials

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The event-related potentials (ERPs) are an essential response of the human brain to environmental changes that correlate with behavior. They are thus widely used as indicators of brain activity in fundamental research and response sources in brain communication devices. The problem of their robust identification from single-trial EEG recordings or limited data sets is timely and challenging. The current study addresses this issue by evaluating the ERP-associated variations of EEG signals using the measures of complexity based on the recurrence quantification analysis (RQA). Specifically, we demonstrate that the recurrence time entropy (RTE) is a good indicator of ERP-associated changes in the course of successive discrimination of ambiguous visual stimuli. Using the distribution of recurrence times, we conclude why exactly this measure is sensitive to ERP-associated variations of EEG signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

This manuscript has associated data in a data repository: https://doi.org/10.6084/m9.figshare.12155343.v2.

References

  1. M.D. Rugg, T. Curran, Event-related potentials and recognition memory. Trends Cogn. Sci. 11(6), 251–257 (2007)

    Article  Google Scholar 

  2. S.J. Luck, E.S. Kappenman, The Oxford Handbook of Event-related Potential Components (Oxford University Press, Oxford, 2011)

    Google Scholar 

  3. C.S. Herrmann, R.T. Knight, Mechanisms of human attention: event-related potentials and oscillations. Neurosci. Biobehav. Rev. 25(6), 465–476 (2001)

    Article  Google Scholar 

  4. B. Kotchoubey, Event-related potentials, cognition, and behavior: a biological approach. Neurosci. Biobehav. Rev. 30(1), 42–65 (2006)

    Article  Google Scholar 

  5. S.L. Shishkin, I.P. Ganin, A.Y. Kaplan, Event-related potentials in a moving matrix modification of the p300 brain-computer interface paradigm. Neurosci. Lett. 496(2), 95–99 (2011)

    Article  Google Scholar 

  6. I.P. Ganin, S.L. Shishkin, A.Y. Kaplan, A p300-based brain-computer interface with stimuli on moving objects: four-session single-trial and triple-trial tests with a game-like task design. PloS One 8(10), 77755 (2013)

    Article  ADS  Google Scholar 

  7. A. Kaplan, D. Zhigulskaya, D. Kirjanov, Studying the ability to control human phantom fingers in p300 brain-computer interface. Bull. Russ. State Med. Univ. 2, 24–28 (2016)

    Article  Google Scholar 

  8. N. Marwan, M.C. Romano, M. Thiel, J. Kurths, Recurrence plots for the analysis of complex systems. Phys. Rep. 438(5–6), 237–329 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  9. C.L. Webber, N. Marwan, Recurrence quantification analysis. Theory Best Pract. (2015)

  10. R. Acharya, O. Faust, N. Kannathal, T. Chua, S. Laxminarayan, Non-linear analysis of eeg signals at various sleep stages. Comput. Methods Prog. Biomed. 80(1), 37–45 (2005)

    Article  Google Scholar 

  11. S. Carrubba, P.Y. Kim, D.E. McCarty, A.L. Chesson Jr., C. Frilot, A.A. Marino, Continuous eeg-based dynamic markers for sleep depth and phasic events. J. Neurosci. Methods 208(1), 1–9 (2012)

    Article  Google Scholar 

  12. U.R. Acharya, V.K. Sudarshan, H. Adeli, J. Santhosh, J.E. Koh, A. Adeli, Computer-aided diagnosis of depression using eeg signals. Eur. Neurol. 73(5–6), 329–336 (2015)

    Article  Google Scholar 

  13. U.R. Acharya, S. Bhat, O. Faust, H. Adeli, E.C.-P. Chua, W.J.E. Lim, J.E.W. Koh, Nonlinear dynamics measures for automated eeg-based sleep stage detection. Eur. Neurol. 74(5–6), 268–287 (2015)

    Article  Google Scholar 

  14. V.A. Maksimenko, N.S. Frolov, A.E. Hramov, A.E. Runnova, V.V. Grubov, J. Kurths, A.N. Pisarchik, Neural interactions in a spatially-distributed cortical network during perceptual decision-making. Front. Behav. Neurosci. 13, 220 (2019)

    Article  Google Scholar 

  15. E. Pitsik, N. Frolov, K. Hauke Kraemer, V. Grubov, V. Maksimenko, J. Kurths, A. Hramov, Motor execution reduces eeg signals complexity: recurrence quantification analysis study. Chaos Interdiscip. J. Nonlinear Sci. 30(2), 023111 (2020)

    Article  MathSciNet  Google Scholar 

  16. N. Frolov, V. Maksimenko, A. Hramov, Revealing a multiplex brain network through the analysis of recurrences. Chaos Interdiscip. J. Nonlinear Sci. 30(12), 121108 (2020)

    Article  MathSciNet  Google Scholar 

  17. E.N. Pitsik, Recurrence quantification analysis provides the link between age-related decline in motor brain response and complexity of the baseline eeg. Izvestiya Vysshikh Uchebnykh Zavedeniy-prikladnaya Nelineynaya Dinamika 29(3), 386–397 (2021)

    Google Scholar 

  18. N. Marwan, A. Meinke, Extended recurrence plot analysis and its application to erp data. Int. J. Bifurcat. Chaos 14(02), 761–771 (2004)

    Article  MATH  Google Scholar 

  19. S. Schinkel, N. Marwan, J. Kurths, Order patterns recurrence plots in the analysis of erp data. Cogn. Neurodyn. 1(4), 317–325 (2007)

    Article  Google Scholar 

  20. N. Marwan, A. Groth, J. Kurths, Quantification of order patterns recurrence plots of event related potentials. Chaos Complex. Lett. 2, 301–314 (2007)

    Google Scholar 

  21. E. Pitsik, N. Frolov, Recurrence quantification analysis detects p300 on single-trial eeg. In: 2021 5th Scientific School Dynamics of Complex Networks and Their Applications (DCNA), pp. 155–158 (2021). IEEE

  22. E. Pitsik, Recurrence quantification analysis of p300 event-related potential on single-trial eeg. Bull. Russ. Acad. Scie. Phys. 86(2), 211–215 (2022)

    Article  Google Scholar 

  23. K.H. Kraemer, R.V. Donner, J. Heitzig, N. Marwan, Recurrence threshold selection for obtaining robust recurrence characteristics in different embedding dimensions. Chaos Interdiscip. J. Nonlinear Sci. 28(8), 085720 (2018)

    Article  MathSciNet  Google Scholar 

  24. C.L. Wiggs, A. Martin, Properties and mechanisms of perceptual priming. Curr. Opin. Neurobiol. 8(2), 227–233 (1998)

    Article  Google Scholar 

  25. M. Kutas, K.D. Federmeier, Electrophysiology reveals semantic memory use in language comprehension. Trend Cogn. Sci. 4(12), 463–470 (2000)

    Article  Google Scholar 

  26. J.F. Donges, J. Heitzig, B. Beronov, M. Wiedermann, J. Runge, Q.Y. Feng, L. Tupikina, V. Stolbova, R.V. Donner, N. Marwan et al., Unified functional network and nonlinear time series analysis for complex systems science: the pyunicorn package. Chaos Interdiscip. J. Nonlinear Sci. 25(11), 113101 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. E. Maris, R. Oostenveld, Nonparametric statistical testing of eeg-and meg-data. J. Neurosci. Methods 164(1), 177–190 (2007)

    Article  Google Scholar 

  28. A. Gramfort, M. Luessi, E. Larson, D.A. Engemann, D. Strohmeier, C. Brodbeck, R. Goj, M. Jas, T. Brooks, L. Parkkonen et al., Meg and eeg data analysis with mne-python. Front. Neurosci. 267 (2013)

  29. J.Z. Bakdash, L.R. Marusich, Repeated measures correlation. Front. Psychol. 8, 456 (2017)

    Article  Google Scholar 

  30. R. Vallat, Pingouin: statistics in python. J. Open Sour. Softw. 3(31), 1026 (2018)

    Article  ADS  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research (Grant number 19-32-60042) in the part of electrophysiological experiment. The data analysis was supported by the Program of Scientific School Support (Grant number NSH-589.2022.1.2).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by NF, EP and VM. The study was supervised and coordinated by AH. The first draft of the manuscript was written by NF and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nikita Frolov.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frolov, N., Pitsik, E., Maksimenko, V. et al. Applying recurrence time entropy to identify changes in event-related potentials. Eur. Phys. J. Spec. Top. 232, 161–168 (2023). https://doi.org/10.1140/epjs/s11734-022-00743-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00743-y

Navigation