Skip to main content
Log in

Biomarkers of the psychophysiological state during the cognitive tasks estimated from the signals of the brain, cardiovascular and respiratory systems

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Diagnostics of the psychophysiological state at rest and under stressful conditions is an important problem. We tested various biomarkers of the psychophysiological state of healthy volunteers at rest and while completing stress-inducing cognitive tasks, namely the Stroop color word test and mental arithmetic test. We tested the biomarkers based on the analysis of electroencephalograms, respiratory signals, and the signals of cardiovascular system. We investigated both the individual characteristics of these signals in the low-frequency range (less than 0.5 Hz), and characteristics of their interaction. According to our results, the most sensitive biomarkers of cognitive task stress are nonlinear phase coherence between the 0.15 and 0.40 Hz oscillations in the respiratory signal and heart rate variability, and integral power of the 0.15–0.40 Hz oscillations in the frontal lobe EEG leads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. G. Giannakakis, D. Grigoriadis, K. Giannakaki, O. Simantiraki et al., IEEE Trans. Affect. Comput. 13, 440–460 (2019). https://doi.org/10.1109/TAFFC.2019.2927337

    Article  Google Scholar 

  2. N. Kulkarni, S. Phalle, M. Desale, N. Gokhale et al., Mukt Shabd J. 9, 1317–1325 (2020)

    Google Scholar 

  3. T.H. Holmes, R.H. Rahe, J. Psychosom. Res. 11, 213–218 (1967). https://doi.org/10.1016/0022-3999(67)90010-4

    Article  Google Scholar 

  4. S.M. Monroe, Annu. Rev. Clin. Psychol. 4, 33–52 (2008). https://doi.org/10.1146/annurev.clinpsy.4.022007.141207

    Article  Google Scholar 

  5. I.B. Weiner, W.E. Craighead, Corsini Encycl. Psychol. 4, 1698–1699 (2010)

    Google Scholar 

  6. P.L. Schnall, J.E. Schwartz, P.A. Landsbergis, K. Warren et al., Psychosom. Med. 60, 697–706 (1998)

    Article  Google Scholar 

  7. D. Carroll, C. Ring, K. Hunt, G. Ford et al., Psychosom. Med. 65, 1058–1064 (2003)

    Article  Google Scholar 

  8. D. Carroll, A.C. Phillips, G. Der, K. Hunt et al., Psychosom. Med. 73, 737–742 (2011)

    Article  Google Scholar 

  9. C. Setz, B. Arnrich, J. Schumm, R. La Marca et al., IEEE Trans. Inf Technol. Biomed. 14, 410–417 (2010). https://doi.org/10.1109/TITB.2009.2036164

    Article  Google Scholar 

  10. D. Giakoumis, A. Drosou, P. Cipresso, D. Tzovaras et al., PLoS ONE 7, e43571 (2012). https://doi.org/10.1371/journal.pone.0043571

    Article  ADS  Google Scholar 

  11. P. Ren, A. Barreto, Y. Gao, M. Adjouadi, IEEE Trans. Affect. Comput. 4, 2–14 (2013). https://doi.org/10.1109/T-AFFC.2012.25

    Article  Google Scholar 

  12. F. Al-Shargie, T.B. Tang, N. Badruddin, M. Kiguchi, et al., International Conference for Innovation in Biomedical Engineering and Life Sciences. 15–19 (2015) https://doi.org/10.1007/978-981-10-0266-3_4

  13. L.M. Schleifer, T.W. Spalding, S.E. Kerick, J.R. Cram et al., Psychophysiology 45, 356–365 (2008). https://doi.org/10.1111/j.1469-8986.2008.00645.x

    Article  Google Scholar 

  14. U. Lundberg, R. Kadefors, B. Melin, G. Palmerud et al., Int. J. Behav. Med. 1, 354–370 (1994)

    Article  Google Scholar 

  15. R. Luijcks, H.J. Hermens, L. Bodar, C.J. Vossen et al., PLoS ONE 9, e95215 (2014). https://doi.org/10.1371/journal.pone.0095215

    Article  ADS  Google Scholar 

  16. T. Oka, Temperature: Multidisciplinary Biomedical Journal. 2, 368–378 (2015) https://doi.org/10.1080/23328940.2015.1056907

  17. V. Engert, A. Merla, J.A. Grant, D. Cardone et al., PLoS ONE 9, e90782 (2014). https://doi.org/10.1371/journal.pone.0090782

    Article  ADS  Google Scholar 

  18. C.H. Vinkers, R. Penning, J. Hellhammer, J.C. Verster et al., Stress. 16, 520–530 (2013). https://doi.org/10.3109/10253890.2013.807243

    Article  Google Scholar 

  19. T. Partala, V. Surakka, Int. J. Hum. Comput. Stud. 59, 185–198 (2003). https://doi.org/10.1016/S1071-5819(03)00017-X

    Article  Google Scholar 

  20. H.M. Simpson, F.M. Molloy, Psychophysiology 8, 491–496 (1971)

    Article  Google Scholar 

  21. W. Liao, W. Zhang, Z.I. Zhu, Q. Ji, 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05)-workshops. 70–70 (2005)

  22. S.A. Vreeburg, F.G. Zitman, J. van Pelt, R.H. DeRijk et al., Psychosom. Med. 72, 340–347 (2010). https://doi.org/10.1097/PSY.0b013e3181d2f0c8

    Article  Google Scholar 

  23. T. Reinhardt, C. Schmahl, S. Wüst, M. Bohus, Psychiatry Res. 198, 106–111 (2012). https://doi.org/10.1016/j.psychres.2011.12.009

    Article  Google Scholar 

  24. U.M. Nater, N. Rohleder, J. Gaab, S. Berger et al., Int. J. Psychophysiol. 55, 333–342 (2005). https://doi.org/10.1016/j.ijpsycho.2004.09.009

    Article  Google Scholar 

  25. F. Al-Shargie, M. Kiguchi, N. Badruddin, S.C. Dass et al., Biomedical. Opt. Express 7, 3882–3898 (2016). https://doi.org/10.1364/BOE.7.003882

    Article  Google Scholar 

  26. J.A. Arrighi, M. Burg, I.S. Cohen, A.H. Kao et al., Lancet 356, 310–311 (2000). https://doi.org/10.1016/S0140-6736(00)02510-1

    Article  Google Scholar 

  27. X. Zhang, S.A. Huettel, A. O’Dhaniel, H. Guo et al., J. Psychiatr. Res. 113, 172–180 (2019). https://doi.org/10.1016/j.jpsychires.2019.03.025

    Article  Google Scholar 

  28. P. Grossman, Psychophysiology 20, 284–300 (1983). https://doi.org/10.1111/j.1469-8986.1983.tb02156.x

    Article  Google Scholar 

  29. M. Singh, A.B. Queyam, Int. J. Electron. Eng. Appl. 5, 1–5 (2013)

    Google Scholar 

  30. Y. Lyu, X. Luo, J. Zhou, C. Yu, et al., 33rd Annual ACM Conference on Human Factors in Computing Systems. 857–866 (2015)

  31. K. Yashima, T. Sasaki, Y. Kageyama, M. Odagaki, et al., IEEE Engineering in Medicine and Biology 27th Annual Conference. 2781–2784 (2005) https://doi.org/10.1109/IEMBS.2005.1617049

  32. C. Iani, D. Gopher, A. Grunwald, P. Lavie, Ergonomics 50, 1026–1035 (2007). https://doi.org/10.1080/00140130701303386

    Article  Google Scholar 

  33. C. Iani, D. Gopher, P. Lavie, Psychophysiology 41, 789–798 (2004). https://doi.org/10.1111/j.1469-8986.2004.00200.x

    Article  Google Scholar 

  34. A. Henelius, arXiv. (2016) https://doi.org/10.48550/arXiv.1612.07677

  35. G.N. Dikecligil, L.R. Mujica-Parodi, Biol. Psychiatry. 67, 1185–1190 (2010). https://doi.org/10.1016/j.biopsych.2010.02.001

    Article  Google Scholar 

  36. Z. Visnovcova, M. Mestanik, M. Javorka, D. Mokra et al., Physiol. Measur. 35, 1319 (2014)

    Article  ADS  Google Scholar 

  37. Z. Li, H. Snieder, S. Su, X. Ding et al., Int. J. of Psychophysiol. 73, 212–217 (2009). https://doi.org/10.1016/j.ijpsycho.2009.03.002

    Article  Google Scholar 

  38. J.P. Saul, R. Rea, D.L. Eckberg, R.D. Berger et al., Am. J. Physiol. Heart Circ. Physiol. 258, H713–H721 (1990). https://doi.org/10.1152/ajpheart.1990.258.3.H713

    Article  Google Scholar 

  39. N. Hjortskov, D. Rissén, A.K. Blangsted, N. Fallentin et al., Eur. J. Appl. Physiol. 92, 84–89 (2004)

    Article  Google Scholar 

  40. G. Giannakakis, D. Grigoriadis, M. Tsiknakis, IEEE Engineering in Medicine and Biology Conference. 6034–6037 (2015) https://doi.org/10.1109/EMBC.2015.7319767

  41. A. Demerdzieva, Acta Informatica. Medica. 19, 9 (2011)

    Google Scholar 

  42. V. Knott, C. Mahoney, S. Kennedy, K. Evans, Psychiatry Res. 106, 123–140 (2001). https://doi.org/10.1016/S0925-4927(00)00080-9

    Article  Google Scholar 

  43. J. Minguillon, M.A. Lopez-Gordo, F. Pelayo, Front. Comput. Neurosci. 10, 101 (2016). https://doi.org/10.3389/fncom.2016.0010

    Article  Google Scholar 

  44. Y. Tran, R. Thuraisingham, N. Wijesuriya, H. Nguyen, et al., 3rd International IEEE/EMBS Conference on Neural Engineering. 350–353 (2007) https://doi.org/10.1109/CNE.2007.369682

  45. R. Khosrowabadi, C. Quek, K.K. Ang, S.W. Tung, et al., International Joint Conference on Neural Networks. 757–762 (2011) https://doi.org/10.1109/IJCNN.2011.6033297

  46. J. Alonso, S. Romero, M. Ballester, R. Antonijoan et al., Physiol. Meas. 36, 1351–1365 (2015). https://doi.org/10.1088/0967-3334/36/7/1351

    Article  Google Scholar 

  47. N.M. Ehrhardt, J. Fietz, J. Kopf-Beck, N. Kappelmann et al., Eur. J. Neurosci. 55, 1–10 (2021). https://doi.org/10.1111/ejn.15211

    Article  Google Scholar 

  48. F. Al-Shargie, T.B. Tang, N. Badruddin, M. Kiguchi, Med Biol. Eng. Comput. 56, 125–136 (2018)

    Article  Google Scholar 

  49. A.R. Subhani, A.S. Malik, N. Kamil, M. Naufal, et al., 6th International Conference on Intelligent and Advanced Systems. 1–4 (2016) https://doi.org/10.1109/ICIAS.2016.7824097

  50. B.P. Bezruchko, D.A. Smirnov, Extracting knowledge from time series: An introduction to nonlinear empirical modeling (Springer, New York, 2010)

    Book  MATH  Google Scholar 

  51. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology, Circulation 93, 1043–1065 (1996)

  52. N.A. Aladjalova, Nature 179, 957–959 (1957). https://doi.org/10.1038/179957a0

    Article  ADS  Google Scholar 

  53. G.G. Knyazev, Neurosci. Biobehav. Rev. 36, 677 (2012). https://doi.org/10.1016/j.neubiorev.2011.10.002

    Article  Google Scholar 

  54. M.L. Lorincz, F. Geall, Y. Bao, V. Crunelli et al., PLoS ONE 4, e4447 (2009). https://doi.org/10.1371/journal.pone.0004447

    Article  ADS  Google Scholar 

  55. A.S. Karavaev, A.R. Kiselev, A.E. Runnova, M.O. Zhuravlev et al., Chaos 28, 081102 (2018). https://doi.org/10.1063/1.5046758

    Article  ADS  MathSciNet  Google Scholar 

  56. J.R. Stroop, J. Exp. Psychol. 18, 643–662, (1935) https://doi.org/10.12691/rpbs-3-2-3

  57. G.M. Schneider, D.W. Jacobs, R.N. Gevirtz, D.T. O`Connor, J. Hum. Hypertens. 17, 829–840 (2003) https://doi.org/10.1038/sj.jhh.1001624

  58. http://medicom-mtd.com/htm/Products/eegr-main.html

  59. U.R. Acharya, S.V. Sree, P.C.A. Ang, R. Yanti et al., Int. J. Neural. Syst. 22, 1250002 (2012). https://doi.org/10.1142/S0129065712500025

    Article  Google Scholar 

  60. V.I. Ponomarenko, A.S. Karavaev, E.I. Borovkova, A.N. Hramkov et al., Chaos 31, 073105 (2021). https://doi.org/10.1063/5.0056624

    Article  ADS  Google Scholar 

  61. H.B. Mann, D.R. Whitney, Ann. Math. Stat. 50–60 (1947)

  62. E. Simoes, R. Roark, S. Berman, L. Esler et al., Arch. Dis. Child. 66, 1199–1203 (1991). https://doi.org/10.1136/adc.66.10.1199

    Article  Google Scholar 

  63. A.B. Bespyatov, M.B. Bodrov, V.I. Gridnev, V.I. Ponomarenko et al., Nonlinear Phenomena Complex Syst. 6, 885–893 (2003)

    Google Scholar 

  64. V.I. Ponomarenko, M.D. Prokhorov, A.B. Bespyatov, M.B. Bodrov et al., Chaos. Solitons & Fractals. 23, 1429–1438 (2005). https://doi.org/10.1016/j.chaos.2004.06.041

    Article  ADS  Google Scholar 

  65. M.D. Prokhorov, V.I. Ponomarenko, V.I. Gridnev, M.B. Bodrov et al., Phys. Rev. E. 68, 041913 (2003). https://doi.org/10.1103/PhysRevE.68.041913

    Article  ADS  Google Scholar 

  66. Y. Shiogai, A. Stefanovska, P.V.E. McClintock, Phys. Rep. 488, 51–110 (2010). https://doi.org/10.1016/j.physrep.2009.12.003

    Article  ADS  Google Scholar 

  67. R.P. Bartsch, A.Y. Schumann, J.W. Kantelhardt, T. Penzel et al., Proc. Natl. Acad. Sci. U.S.A. 109, 10181 (2012). https://doi.org/10.1073/pnas.1204568109

    Article  ADS  Google Scholar 

  68. A.S. Karavaev, Y.M. Ishbulatov, M.D. Prokhorov, V.I. Ponomarenko et al., Front. Physiol. 11, 612787 (2021). https://doi.org/10.3389/fphys.2020.612787

    Article  Google Scholar 

  69. E.I. Borovkova, M.D. Prokhorov, A.R. Kiselev, A.N. Hramkov et al., Front. Netw. Physiol. 2, 942700 (2022). https://doi.org/10.3389/fnetp.2022.942700

    Article  Google Scholar 

  70. A. Bunde, S. Havlin, J.W. Kantelhardt, T. Penzel et al., Phys. Rev. Lett. 85, 3736 (2000). https://doi.org/10.1103/PhysRevLett.85.3736

    Article  ADS  Google Scholar 

  71. A.Y. Schumann, R.P. Bartsch, T. Penzel, PCh. Ivanov et al., Sleep 33, 943 (2010). https://doi.org/10.1093/sleep/33.7.943

    Article  Google Scholar 

  72. A.R. Kiselev, V.I. Gridnev, M.D. Prokhorov, A.S. Karavaev et al., J. Cardiovasc. Med. 13, 491 (2012). https://doi.org/10.2459/JCM.0b013e3283512199

    Article  Google Scholar 

  73. S.H. Hohnloser, T. Klingenheben, A. van de Loo, E. Hablawetz et al., Circulation 89, 1068 (1994). https://doi.org/10.1161/01.CIR.89.3.1068

    Article  Google Scholar 

  74. V.V. Skazkina, N.S. Krasikova, E.I. Borovkova, Y.M. Ishbulatov, et al., Russ. Open Med. J. 10, e0307 (2021) https://doi.org/10.15275/rusomj.2021.0307

  75. Y.M. Ishbulatov, A.S. Karavaev, A.R. Kiselev, M.A. Simonyan et al., Sci Rep 10, 16525 (2020). https://doi.org/10.1038/s41598-020-71532-7

    Article  ADS  Google Scholar 

  76. M.D. Prokhorov, A.S. Karavaev, Y.M. Ishbulatov, V.I. Ponomarenko et al., Phys. Rev. E 103, 042404 (2021). https://doi.org/10.1103/PhysRevE.103.042404

    Article  ADS  Google Scholar 

  77. B. McA. Saykrs, Ergonomics. 16, 17-32 (1973) https://doi.org/10.1080/00140137308924479

  78. A.S. Karavaev, M.D. Prokhorov, V.I. Ponomarenko, A.R. Kiselev et al., Chaos 19, 033112 (2009). https://doi.org/10.1063/1.3187794

    Article  ADS  Google Scholar 

  79. E.I. Borovkova, A.N. Hramkov, A.S. Karavaev, V.I. Ponomarenko, et al., 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society. 5398–5402 (2021) https://doi.org/10.1109/EMBC46164.2021.9630385

  80. A. Karavaev, V. Skazkina, Y. Ishbulatov, and E. Borovkova, Cybernet. Phys. 8, 128–131 (2019) https://doi.org/10.35470/2226-4116-2019-8-3-128-131

Download references

Funding

This research was supported from the Russian Federal Academic Leadership Program Priority 2030 at the Immanuel Kant Baltic Federal University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ekaterina I. Borovkova or Aleksey N. Hramkov.

Additional information

Brain Physiology Meets Complex Systems. Guest editors: Thomas Penzel, Teemu Myllylä, Oxana V. Semyachkina-Glushkovskaya, Alexey Pavlov, Anatoly Karavaev.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 54 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borovkova, E.I., Hramkov, A.N., Dubinkina, E.S. et al. Biomarkers of the psychophysiological state during the cognitive tasks estimated from the signals of the brain, cardiovascular and respiratory systems. Eur. Phys. J. Spec. Top. 232, 625–633 (2023). https://doi.org/10.1140/epjs/s11734-022-00734-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00734-z

Navigation