Skip to main content
Log in

Synchronization and chimera in a multiplex network of Hindmarsh–Rose neuron map with flux-controlled memristor

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In network analysis, using discrete models, known as map models, brings advantages to the network since such models are more flexible and efficient than continuous ones. Memristor is another concept that brings a significant nonlinearity to the system. Therefore, different initially discrete or discretized memristive maps can be found in the literature. To benefit from the advantages of the memristive maps and to model different multi-level neural interactions, in this paper, we investigate the synchronization and chimera state in a multiplex network of discretized Hindmarsh–Rose maps with a flux-controlled memristor. The studied multiplex network was considered to have two layers, each having a different small-world structure with 50 neurons, and corresponding neurons from different layers were linked. In the constructed two-layer network, the influence of different intra-layer couplings on synchronization was studied, while chemical synapses were considered the only inter-layer neural interactions. We found that when intra-layer neurons interacted electrically, they could achieve synchronization as the electrical coupling strength increased. However, when neurons were linked through electrical and chemical couplings, they could not reach a synchronous state. Similarly, chemically coupled intra-layer neurons could not achieve synchronization as well. Also, we observed that chemical inter-layer interactions could lead to the formation of coherent and incoherent clusters. Thus, in a weak intra-layer coupling value, the chimera state was found by increasing the inter-layer coupling strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated during the current study.

References

  1. J. Ma, J. Tang, A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 1–10 (2017)

  2. A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500 (1952)

    Article  Google Scholar 

  3. W.W. Lytton, Computer modelling of epilepsy. Nat. Rev. Neurosci. 9(8), 626–637 (2008)

    Article  Google Scholar 

  4. W. Hao, A. Friedman, Mathematical model on Alzheimer’s disease. BMC Syst. Biol. 10(1), 1–18 (2016)

    Article  Google Scholar 

  5. S. Bakshi, V. Chelliah, C. Chen, P.H. van der Graaf, Mathematical biology models of Parkinson’s disease. CPT Pharmacometr. Syst. Pharmacol. 8(2), 77–86 (2019)

    Article  Google Scholar 

  6. J. Hindmarsh, R. Rose, A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B Biol. Sci. 221(1222), 87–102 (1984)

    Article  ADS  Google Scholar 

  7. R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6), 445–466 (1961)

    Article  ADS  Google Scholar 

  8. C. Morris, H. Lecar, Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35(1), 193–213 (1981)

    Article  ADS  Google Scholar 

  9. N.F. Rulkov, Modeling of spiking-bursting neural behavior using two-dimensional map. Phys. Rev. E 65(4), 041922 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. B. Ibarz, J.M. Casado, M.A. Sanjuán, Map-based models in neuronal dynamics. Phys. Rep. 501(1–2), 1–74 (2011)

    Article  ADS  Google Scholar 

  11. N. Zandi-Mehran, S. Panahi, Z. Hosseini, S.M.R.H. Golpayegani, S. Jafari, One dimensional map-based neuron model: a phase space interpretation. Chaos Solitons Fractals 132, 109558 (2020)

    Article  MathSciNet  Google Scholar 

  12. D.R. Chialvo, Generic excitable dynamics on a two-dimensional map. Chaos Solitons Fractals 5(3–4), 461–479 (1995)

    Article  ADS  MATH  Google Scholar 

  13. B. Li, Z. He, Bifurcations and chaos in a two-dimensional discrete Hindmarsh-Rose model. Nonlinear Dyn. 76(1), 697–715 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. E.M. Izhikevich, F. Hoppensteadt, Classification of bursting mappings. Int. J. Bifurc. Chaos 14(11), 3847–3854 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Chua, Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  16. H. Bao, A. Hu, W. Liu, B. Bao, Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction. IEEE Trans. Neural Netw. Learn. Syst. 31(2), 502–511 (2019)

    Article  Google Scholar 

  17. L. Chua, V. Sbitnev, H. Kim, Hodgkin–Huxley axon is made of memristors. Int. J. Bifurc. Chaos 22(03), 1230011 (2012)

    Article  MATH  Google Scholar 

  18. K. Usha, P. Subha, Hindmarsh-Rose neuron model with memristors. Biosystems 178, 1–9 (2019)

    Article  MATH  Google Scholar 

  19. Z.T. Njitacke, C.N. Takembo, J. Awrejcewicz, H.P.E. Fouda, J. Kengne, Hamilton energy, complex dynamical analysis and information patterns of a new memristive FitzHugh-Nagumo neural network. Chaos Solitons Fractals 160, 112211 (2022)

    Article  MathSciNet  Google Scholar 

  20. G. Qi, Y. Wu, J. Hu, Abundant firing patterns in a memristive Morris-Lecar neuron model. Int. J. Bifurc. Chaos 31(11), 2150170 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Bao, Z. Hua, H. Li, M. Chen, B. Bao, Discrete memristor hyperchaotic maps. IEEE Trans. Circuits Syst. I Regul. Pap. 68(11), 4534–4544 (2021)

    Article  Google Scholar 

  22. K. Li, H. Bao, H. Li, J. Ma, Z. Hua, B.C. Bao, Memristive Rulkov neuron model with magnetic induction effects. IEEE Trans. Ind. Inform. 1 (2021)

  23. H. Bao, Z. Hua, W. Liu, B. Bao, Discrete memristive neuron model and its interspike interval-encoded application in image encryption. Sci. China Technol. Sci. 64(10), 2281–2291 (2021)

    Article  ADS  Google Scholar 

  24. M. Mehrabbeik, F. Parastesh, J. Ramadoss, K. Rajagopal, H. Namazi, S. Jafari, Synchronization and chimera states in the network of electrochemically coupled memristive Rulkov neuron maps. Math. Biosci. Eng. 18(6), 9394–9409 (2021)

    Article  MATH  Google Scholar 

  25. B. Ramakrishnan, M. Mehrabbeik, F. Parastesh, K. Rajagopal, S. Jafari, A new memristive neuron map model and its network’s dynamics under electrochemical coupling. Electronics 11(1), 153 (2022)

    Article  Google Scholar 

  26. F. Parastesh, M. Mehrabbeik, K. Rajagopal, S. Jafari, M. Perc, Synchronization in Hindmarsh-Rose neurons subject to higher-order interactions. Chaos Interdiscip. J. Nonlinear Sci. 32(1), 013125 (2022)

    Article  MathSciNet  Google Scholar 

  27. F. Parastesh et al., Chimeras. Phys. Rep. 898, 1–114 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. A. Bandyopadhyay, S. Kar, Impact of network structure on synchronization of Hindmarsh-Rose neurons coupled in structured network. Appl. Math. Comput. 333, 194–212 (2018)

    MathSciNet  MATH  Google Scholar 

  29. S. Pusil, S.I. Dimitriadis, M.E. López, E. Pereda, F.J.N.C. Maestú, Aberrant MEG multi-frequency phase temporal synchronization predicts conversion from mild cognitive impairment-to-Alzheimer’s disease. NeuroImage Clin. 24, 101972 (2019)

    Article  Google Scholar 

  30. A.S. Reis, K.C. Iarosz, F.A. Ferrari, I.L. Caldas, A.M. Batista, R.L. Viana, Bursting synchronization in neuronal assemblies of scale-free networks. Chaos Solitons Fractals 142, 110395 (2021)

    Article  MathSciNet  Google Scholar 

  31. E. Zambrano-Serrano, J.M. Munoz-Pacheco, A. Anzo-Hernández, O.G. Félix-Beltrán, D.K. Guevara-Flores, Synchronization of a cluster of β-cells based on a small-world network and its electronic experimental verification. Eur. Phys. J. Spec. Top. 231(5), 1035–1047 (2022)

    Article  Google Scholar 

  32. E. Rybalova, T. Vadivasova, G. Strelkova, V.S. Anishchenko, A. Zakharova, Forced synchronization of a multilayer heterogeneous network of chaotic maps in the chimera state mode. Chaos Interdiscip. J. Nonlinear Sci. 29(3), 033134 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. B. Yan, F. Parastesh, S. He, K. Rajagopal, S. Jafari, M. Perc, Interlayer and intralayer synchronization in multiplex fractional-order neuronal networks. Fractals (2022)

  34. M. Winkler, J. Sawicki, I. Omelchenko, A. Zakharova, V. Anishchenko, E. Schöll, Relay synchronization in multiplex networks of discrete maps. EPL 126(5), 50004 (2019)

    Article  ADS  Google Scholar 

  35. B.K. Bera, S. Rakshit, D. Ghosh, Intralayer synchronization in neuronal multiplex network. Eur. Phys. J. Spec. Top. 228(11), 2441–2454 (2019)

    Article  Google Scholar 

  36. V.A. Maksimenko et al., Excitation and suppression of chimera states by multiplexing. Phys. Rev. E 94(5), 052205 (2016)

    Article  ADS  Google Scholar 

  37. E. Rybalova, A. Zakharova, G. Strelkova, Interplay between solitary states and chimeras in multiplex neural networks. Chaos Solitons Fractals 148, 111011 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  38. J.L. Hindmarsh, R.M. Rose, A model of the nerve impulse using two first-order differential equations. Nature 296(5853), 162–164 (1982)

    Article  ADS  Google Scholar 

  39. D.J. Watts, S.H. Strogatz, Collective dynamics of ‘small-world’networks. Nature 393(6684), 440–442 (1998)

    Article  ADS  MATH  Google Scholar 

  40. S. Rakshit, A. Ray, B.K. Bera, D. Ghosh, Synchronization and firing patterns of coupled Rulkov neuronal map. Nonlinear Dyn. 94(2), 785–805 (2018)

    Article  Google Scholar 

  41. S.F. Muldoon, E.W. Bridgeford, D.S. Bassett, Small-world propensity and weighted brain networks. Sci. Rep. 6(1), 1–13 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from the National Natural Science Foundations of China under Grant nos. 12172066 and 61801054, the Natural Science Foundations of Jiangsu Province, China under Grant nos. BK20160282, 333 Project of Jiangsu Province of China, and Qinglan Project of Jiangsu Province of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Xu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, W., Wu, H., Li, Z. et al. Synchronization and chimera in a multiplex network of Hindmarsh–Rose neuron map with flux-controlled memristor. Eur. Phys. J. Spec. Top. 231, 4131–4141 (2022). https://doi.org/10.1140/epjs/s11734-022-00720-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00720-5

Navigation