Skip to main content
Log in

Features of the resting-state functional brain network of children with autism spectrum disorder: EEG source-level analysis

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We study the specific features of the organization of the functional brain networks of children with autism spectrum disorder (ASD) by analyzing at the source level the data obtained in the EEG experiment in the resting-state paradigm. We pay special attention to age-related changes in the characteristics of functional networks during the particularly important age period from early childhood to adolescence. The analyzed experimental groups consisted of 148 ASD children and 173 neurotypical children that were considered as a control group. In the theta band, we revealed an age-independent functional connectivity pattern, consisting of the brain areas responsible for emotions and consciousness, where the strength of connections is higher in neurotypical children compared to ASD children. Moreover, we discovered lower network global clustering in the delta + theta band in ASD children. Thus, more segregated, but more highly connected subnets are formed in the delta + theta band in neurotypical individuals compared to ASD ones. We can suggest increased control over emotions and stronger interaction between the emotional and conscious domains in neurotypical children. In the extended alpha band, we revealed an age-dependent functional connectivity pattern, demonstrating hyper-activation in the ASD group for ages below 6–7 years old and hypo-activation—for older ages. Also, we discuss the development of effective approaches to autism therapy, which should be based on the normalization of aberrant functional connections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availibility statement

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. E. Courchesne et al., The asd living biology: from cell proliferation to clinical phenotype. Mol. Psychiatry 24(1), 88–107 (2019)

    Google Scholar 

  2. E. Courchesne, V.H. Gazestani, N.E. Lewis, Prenatal origins of asd: the when, what, and how of asd development. Trends Neurosci. 43(5), 326–342 (2020)

    Google Scholar 

  3. A.M. Daniels, D.S. Mandell, Explaining differences in age at autism spectrum disorder diagnosis: A critical review. Autism 18(5), 583–597 (2014)

    Google Scholar 

  4. F. Apicella, V. Costanzo, G. Purpura, Are early visual behavior impairments involved in the onset of autism spectrum disorders? insights for early diagnosis and intervention. Eur. J. Pediatr. 179(2), 225–234 (2020)

    Google Scholar 

  5. C.S. Hiremath et al., Emerging behavioral and neuroimaging biomarkers for early and accurate characterization of autism spectrum disorders: a systematic review. Transl. Psychiatry 11(1), 1–12 (2021)

    Google Scholar 

  6. F. Negin, B. Ozyer, S. Agahian, S. Kacdioglu, G.T. Ozyer, Vision-assisted recognition of stereotype behaviors for early diagnosis of autism spectrum disorders. Neurocomputing 446, 145–155 (2021)

    Google Scholar 

  7. R. Haweel et al., A robust dwt-cnn-based cad system for early diagnosis of autism using task-based fmri. Med. Phys. 48(5), 2315–2326 (2021)

    Google Scholar 

  8. M. Romero-González et al., Eeg abnormalities and clinical phenotypes in pre-school children with autism spectrum disorder. Epilepsy & Behavior 129, 108619 (2022)

    Google Scholar 

  9. F. Almuqhim, F. Saeed, Asd-saenet: a sparse autoencoder, and deep-neural network model for detecting autism spectrum disorder (asd) using fmri data. Front. Comput. Neurosci. 15, 654315 (2021)

    Google Scholar 

  10. T. Eslami, V. Mirjalili, A. Fong, A.R. Laird, F. Saeed, Asd-diagnet: a hybrid learning approach for detection of autism spectrum disorder using fmri data. Front. Neuroinform. 13, 70 (2019)

    Google Scholar 

  11. H. Haghighat, M. Mirzarezaee, B.N. Araabi, A. Khadem, An age-dependent connectivity-based computer aided diagnosis system for autism spectrum disorder using resting-state fmri. Biomed. Signal Process. Control 71, 103108 (2022)

    Google Scholar 

  12. Li, X. et al. 2-channel convolutional 3d deep neural network (2cc3d) for fmri analysis: Asd classification and feature learning, 1252–1255 (IEEE, 2018)

  13. E. Kilroy et al., Unique deficit in embodied simulation in autism: An fmri study comparing autism and developmental coordination disorder. Hum. Brain Mapp. 42(5), 1532–1546 (2021)

    Google Scholar 

  14. A. Jack, Neuroimaging in neurodevelopmental disorders: focus on resting-state fmri analysis of intrinsic functional brain connectivity. Curr. Opin. Neurol. 31(2), 140–148 (2018)

    Google Scholar 

  15. H. Hadoush, M. Alafeef, E. Abdulhay, Automated identification for autism severity level: Eeg analysis using empirical mode decomposition and second order difference plot. Behav. Brain Res. 362, 240–248 (2019)

    Google Scholar 

  16. E. Grossi, M. Buscema, F. Della Torre, R.J. Swatzyna, The, “ms-rom/ifast’’ model, a novel parallel nonlinear eeg analysis technique, distinguishes asd subjects from children affected with other neuropsychiatric disorders with high degree of accuracy. Clin. EEG Neurosci. 50(5), 319–331 (2019)

    Google Scholar 

  17. C. DiStefano, A. Dickinson, E. Baker, S.S. Jeste, Eeg data collection in children with asd: The role of state in data quality and spectral power. Research in autism spectrum disorders 57, 132–144 (2019)

    Google Scholar 

  18. S. Pierce et al., Associations between sensory processing and electrophysiological and neurochemical measures in children with asd: an eeg-mrs study. J. Neurodev. Disord. 13(1), 1–11 (2021)

    Google Scholar 

  19. J.V. Hull et al., Resting-state functional connectivity in autism spectrum disorders: a review. Front. Psych. 7, 205 (2017)

    Google Scholar 

  20. A.E. Hramov et al., Functional networks of the brain: from connectivity restoration to dynamic integration. Phys. Usp. 64(6), 584 (2021)

    MathSciNet  ADS  Google Scholar 

  21. Nomi, J. S. & Uddin, L. Q. Developmental changes in large-scale network connectivity in autism. NeuroImage: Clinical 7, 732–741 (2015)

  22. B.E. Yerys et al., The fmri success rate of children and adolescents: typical development, epilepsy, attention deficit/hyperactivity disorder, and autism spectrum disorders. Hum. Brain Mapp. 30(10), 3426–3435 (2009)

    Google Scholar 

  23. S.L. Bressler, V. Menon, Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn. Sci. 14(6), 277–290 (2010)

    Google Scholar 

  24. M. Assaf et al., Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients. Neuroimage 53(1), 247–256 (2010)

    Google Scholar 

  25. A.C. Kelly, L.Q. Uddin, B.B. Biswal, F.X. Castellanos, M.P. Milham, Competition between functional brain networks mediates behavioral variability. Neuroimage 39(1), 527–537 (2008)

    Google Scholar 

  26. J.-M. Schoffelen, J. Gross, Source connectivity analysis with meg and eeg. Hum. Brain Mapp. 30(6), 1857–1865 (2009)

    Google Scholar 

  27. R. Grech et al., Review on solving the inverse problem in eeg source analysis. J. Neuroeng. Rehabil. 5(1), 1–33 (2008)

    Google Scholar 

  28. M. Fuchs, J. Kastner, M. Wagner, S. Hawes, J.S. Ebersole, A standardized boundary element method volume conductor model. Clin. Neurophysiol. 113(5), 702–712 (2002)

    Google Scholar 

  29. J.E. Richards, W. Xie, Brains for all the ages: structural neurodevelopment in infants and children from a life-span perspective. Adv. Child Dev. Behav. 48, 1–52 (2015)

    Google Scholar 

  30. A. Gramfort, T. Papadopoulo, E. Olivi, M. Clerc, Openmeeg: opensource software for quasistatic bioelectromagnetics. Biomed. Eng. Online 9(1), 1–20 (2010)

    Google Scholar 

  31. A.M. Bastos, J.-M. Schoffelen, A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Front. Syst. Neurosci. 9, 175 (2016)

    Google Scholar 

  32. L. Fan et al., The human brainnetome atlas: a new brain atlas based on connectional architecture. Cereb. Cortex 26(8), 3508–3526 (2016)

    Google Scholar 

  33. A. Zalesky, A. Fornito, E.T. Bullmore, Network-based statistic: identifying differences in brain networks. Neuroimage 53(4), 1197–1207 (2010)

    Google Scholar 

  34. C.R. Genovese, N.A. Lazar, T. Nichols, Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15(4), 870–878 (2002)

    Google Scholar 

  35. M. Rubinov, O. Sporns, Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3), 1059–1069 (2010)

    Google Scholar 

  36. D.S. Bassett, O. Sporns, Network neuroscience. Nat. Neurosci. 20(3), 353–364 (2017)

    Google Scholar 

  37. F. Darvas, D. Pantazis, E. Kucukaltun-Yildirim, R.M. Leahy, Mapping human brain function with meg and eeg: methods and validation. Neuroimage 23(Suppl 1), S289-299 (2004). https://doi.org/10.1016/j.neuroimage.2004.07.014

    Article  Google Scholar 

  38. V. Sakkalis, Review of advanced techniques for the estimation of brain connectivity measured with eeg/meg. Comput. Biol. Med. 41(12), 1110–1117 (2011). https://doi.org/10.1016/j.compbiomed.2011.06.020

    Article  Google Scholar 

  39. X. Zhang, X. Lei, T. Wu, T. Jiang, A review of eeg and meg for brainnetome research. Cogn. Neurodyn. 8(2), 87–98 (2014). https://doi.org/10.1007/s11571-013-9274-9

    Article  Google Scholar 

  40. E. van Diessen et al., Opportunities and methodological challenges in eeg and meg resting state functional brain network research. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology 126(8), 1468–1481 (2015). https://doi.org/10.1016/j.clinph.2014.11.018

    Article  Google Scholar 

  41. C.M. Michel, B. He, Eeg source localization. Handb. Clin. Neurol. 160, 85–101 (2019). https://doi.org/10.1016/B978-0-444-64032-1.00006-0

    Article  Google Scholar 

  42. Gurau, O., Bosl, W. J. & Newton, C. R. How useful is electroencephalography in the diagnosis of autism spectrum disorders and the delineation of subtypes: A systematic review. Frontiers in Psychiatry 8 (2017). https://www.frontiersin.org/articles/10.3389/fpsyt.2017.00121

  43. Schwartz, S., Kessler, R., Gaughan, T. & Buckley, A. W. Electroencephalogram coherence patterns in autism: An updated review. Pediatric Neurology 67, 7–22 (2017). https://www.sciencedirect.com/science/article/pii/S0887899416301102. https://doi.org/10.1016/j.pediatrneurol.2016.10.018

  44. Zeng, K. et al. Disrupted brain network in children with autism spectrum disorder. Scientific Reports 7 (11), 16253 (2017). https://www.nature.com/articles/s41598-017-16440-z. https://doi.org/10.1038/s41598-017-16440-z

  45. Shephard, E. et al. Resting-state neurophysiological activity patterns in young people with asd, adhd, and asd\(+\)adhd. Journal of Autism and Developmental Disorders 48 (1), 110–122 (2018). https://doi.org/10.1007/s10803-017-3300-4. https://doi.org/10.1007/s10803-017-3300-4

  46. Mehdizadefar, V., Ghassemi, F. & Fallah, A. Brain connectivity reflected in electroencephalogram coherence in individuals with autism: A meta-analysis. Basic and Clinical Neuroscience 10 (5), 409–417 (2019). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7149956/. https://doi.org/10.32598/bcn.9.10.375

  47. Hornung, T., Chan, W.-H., Müller, R.-A., Townsend, J. & Keehn, B. Dopaminergic hypo-activity and reduced theta-band power in autism spectrum disorder: A resting-state eeg study. International Journal of Psychophysiology 146, 101–106 (2019). https://www.sciencedirect.com/science/article/pii/S0167876019304787. https://doi.org/10.1016/j.ijpsycho.2019.08.012

  48. Malaia, E. A., Ahn, S. & Rubchinsky, L. L. Dysregulation of temporal dynamics of synchronous neural activity in adolescents on autism spectrum. Autism Research 13 (1), 24–31 (2020). https://onlinelibrary.wiley.com/doi/abs/10.1002/aur.2219. https://doi.org/10.1002/aur.2219

  49. Hill, A. T., Van Der Elst, J., Bigelow, F. J., Lum, J. A. G. & Enticott, P. G. Right Anterior Theta Connectivity Predicts Autistic Social Traits in Neurotypical Children (2022). http://biorxiv.org/lookup/doi/10.1101/2022.03.26.485953

  50. S. Yao et al., Decreased homotopic interhemispheric functional connectivity in children with autism spectrum disorder. Autism Research: Official Journal of the International Society for Autism Research 14(8), 1609–1620 (2021). https://doi.org/10.1002/aur.2523

    Article  Google Scholar 

  51. Q. Wang et al., Resting-state abnormalities in functional connectivity of the default mode network in autism spectrum disorder: a meta-analysis. Brain Imaging Behav. 15(5), 2583–2592 (2021). https://doi.org/10.1007/s11682-021-00460-5

    Article  Google Scholar 

  52. Zhao, H.-C. et al. Alterations of prefrontal-posterior information processing patterns in autism spectrum disorders. Frontiers in Neuroscience 15 (2022). https://www.frontiersin.org/articles/10.3389/fnins.2021.768219

  53. Christian, I. R. et al. Context-dependent amygdala-prefrontal connectivity in youths with autism spectrum disorder. Research in Autism Spectrum Disorders 91, 101913 (2022). https://www.sciencedirect.com/science/article/pii/S1750946721001884. https://doi.org/10.1016/j.rasd.2021.101913

  54. Gao, J. et al. Multisite autism spectrum disorder classification using convolutional neural network classifier and individual morphological brain networks. Frontiers in Neuroscience 14 (2021). https://www.frontiersin.org/articles/10.3389/fnins.2020.629630

  55. Liu, M., Li, B. & Hu, D. Autism spectrum disorder studies using fmri data and machine learning: A review. Frontiers in Neuroscience 15 (2021). https://www.frontiersin.org/articles/10.3389/fnins.2021.697870

  56. N. Wang, D. Yao, L. Ma, M. Liu, Multi-site clustering and nested feature extraction for identifying autism spectrum disorder with resting-state fmri. Med. Image Anal. 75, 102279 (2022). https://doi.org/10.1016/j.media.2021.102279

    Article  Google Scholar 

  57. Cook, J., Hull, L., Crane, L. & Mandy, W. Camouflaging in autism: A systematic review. Clinical Psychology Review 89, 102080 (2021). https://www.sciencedirect.com/science/article/pii/S0272735821001239. https://doi.org/10.1016/j.cpr.2021.102080

  58. Walsh, E. C. et al. Age-dependent changes in the propofol-induced electroencephalogram in children with autism spectrum disorder. Frontiers in Systems Neuroscience 12 (2018). https://www.frontiersin.org/articles/10.3389/fnsys.2018.00023

  59. Henry, T. R., Dichter, G. S. & Gates, K. Age and gender effects on intrinsic connectivity in autism using functional integration and segregation. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging 3 (5), 414–422 (2018). https://www.sciencedirect.com/science/article/pii/S2451902217301982. https://doi.org/10.1016/j.bpsc.2017.10.006

  60. B.R. Morgan et al., Characterization of autism spectrum disorder across the age span by intrinsic network patterns. Brain Topogr. 32(3), 461–471 (2019). https://doi.org/10.1007/s10548-019-00697-w

    Article  Google Scholar 

  61. J. Bathelt, P.C. Koolschijn, H.M. Geurts, Age-variant and age-invariant features of functional brain organization in middle-aged and older autistic adults. Molecular Autism 11(1), 9 (2020). https://doi.org/10.1186/s13229-020-0316-y

    Article  Google Scholar 

  62. A. Thompson et al., Age-related differences in white matter diffusion measures in autism spectrum condition. Molecular Autism 11(1), 36 (2020). https://doi.org/10.1186/s13229-020-00325-6

    Article  Google Scholar 

  63. A.S. Nunes et al., Atypical age-related changes in cortical thickness in autism spectrum disorder. Sci. Rep. 10(11), 11067 (2020). https://doi.org/10.1038/s41598-020-67507-3

    Article  ADS  Google Scholar 

  64. Wang, J. et al. Resting state eeg abnormalities in autism spectrum disorders. Journal of Neurodevelopmental Disorders 5 (1), 24 (2013). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3847481/. https://doi.org/10.1186/1866-1955-5-24

  65. Lefebvre, A. et al. Alpha waves as a neuromarker of autism spectrum disorder: The challenge of reproducibility and heterogeneity. Frontiers in Neuroscience 12 (2018). https://www.frontiersin.org/article/10.3389/fnins.2018.00662

  66. Dickinson, A., DiStefano, C., Senturk, D. & Jeste, S. S. Peak alpha frequency is a neural marker of cognitive function across the autism spectrum. The European journal of neuroscience 47 (6), 643–651 (2018). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5766439/. https://doi.org/10.1111/ejn.13645

  67. Dickinson, A. et al. Interhemispheric alpha-band hypoconnectivity in children with autism spectrum disorder. Behavioural brain research 348, 227–234 (2018). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993636/. https://doi.org/10.1016/j.bbr.2018.04.026

  68. Edgar, J. C. Identifying electrophysiological markers of autism spectrum disorder and schizophrenia against a backdrop of normal brain development. Psychiatry and Clinical Neurosciences 74 (1), 1–11 (2020). https://onlinelibrary.wiley.com/doi/abs/10.1111/pcn.12927. https://doi.org/10.1111/pcn.12927

  69. S. Basharpoor, F. Heidari, P. Molavi, Eeg coherence in theta, alpha, and beta bands in frontal regions and executive functions. Appl. Neuropsychol. Adult 28(3), 310–317 (2021). https://doi.org/10.1080/23279095.2019.1632860

    Article  Google Scholar 

  70. J.L. Wiggins et al., Using a self-organizing map algorithm to detect age-related changes in functional connectivity during rest in autism spectrum disorders. Brain Res. 1380, 187–197 (2011)

    Google Scholar 

  71. Z. Long, X. Duan, D. Mantini, H. Chen, Alteration of functional connectivity in autism spectrum disorder: effect of age and anatomical distance. Sci. Rep. 6(1), 1–8 (2016)

    Google Scholar 

  72. N. Rommelse, J.K. Buitelaar, C.A. Hartman, Structural brain imaging correlates of asd and adhd across the lifespan: a hypothesis-generating review on developmental asd-adhd subtypes. J. Neural Transm. 124(2), 259–271 (2017)

    Google Scholar 

  73. Y. Lee, B.-Y. Park, O. James, S.-G. Kim, H. Park, Autism spectrum disorder related functional connectivity changes in the language network in children, adolescents and adults. Front. Hum. Neurosci. 11, 418 (2017)

    Google Scholar 

  74. M.J. Walsh, L.C. Baxter, C.J. Smith, B.B. Braden, Age group differences in executive network functional connectivity and relationships with social behavior in men with autism spectrum disorder. Research in autism spectrum disorders 63, 63–77 (2019)

    Google Scholar 

  75. L.Q. Uddin et al., Salience network-based classification and prediction of symptom severity in children with autism. JAMA Psychiat. 70(8), 869–879 (2013)

    Google Scholar 

  76. Yerys, B. E. et al. Default mode network segregation and social deficits in autism spectrum disorder: Evidence from non-medicated children. NeuroImage: Clinical 9, 223–232 (2015). https://www.sciencedirect.com/science/article/pii/S2213158215001412. https://doi.org/10.1016/j.nicl.2015.07.018

  77. Yang, B. et al. Disrupted network segregation of the default mode network in autism spectrum disorder 2021.10.18.21265178 (2021). https://www.medrxiv.org/content/10.1101/2021.10.18.21265178v1. https://doi.org/10.1101/2021.10.18.21265178

  78. J. Liu et al., Improved asd classification using dynamic functional connectivity and multi-task feature selection. Pattern Recogn. Lett. 138, 82–87 (2020)

    ADS  Google Scholar 

  79. Mohanty, A. S., Patra, K. C. & Parida, P. Toddler asd classification using machine learning techniques. International Journal of Online & Biomedical Engineering 17 (7) (2021)

  80. Feng, W., Liu, G., Zeng, K., Zeng, M. & Liu, Y. A review of methods for classification and recognition of asd using fmri data. Journal of neuroscience methods 109456 (2021)

  81. Y. Kong et al., Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier. Neurocomputing 324, 63–68 (2019)

    Google Scholar 

  82. M.S. Ahammed et al., Darkasdnet: Classification of asd on functional mri using deep neural network. Front. Neuroinform. 15, 635657 (2021)

    Google Scholar 

  83. S.R. Sharma, X. Gonda, F.I. Tarazi, Autism spectrum disorder: classification, diagnosis and therapy. Pharmacology & therapeutics 190, 91–104 (2018)

    Google Scholar 

  84. T. Yamada et al., Resting-state functional connectivity-based biomarkers and functional mri-based neurofeedback for psychiatric disorders: a challenge for developing theranostic biomarkers. Int. J. Neuropsychopharmacol. 20(10), 769–781 (2017)

    Google Scholar 

  85. J. Pineda, A. Juavinett, M. Datko, Self-regulation of brain oscillations as a treatment for aberrant brain connections in children with autism. Med. Hypotheses 79(6), 790–798 (2012)

    Google Scholar 

  86. J.A. Pineda, K. Carrasco, M. Datko, S. Pillen, M. Schalles, Neurofeedback training produces normalization in behavioural and electrophysiological measures of high-functioning autism. Philosophical Transactions of the Royal Society B: Biological Sciences 369(1644), 20130183 (2014)

    Google Scholar 

  87. A.E. Hramov, V.A. Maksimenko, A.N. Pisarchik, Physical principles of brain-computer interfaces and their applications for rehabilitation, robotics and control of human brain states. Phys. Rep. 918, 1–133 (2021)

    MathSciNet  ADS  Google Scholar 

  88. E. Altenmüller, G. Schlaug, Apollo’s gift: new aspects of neurologic music therapy. Prog. Brain Res. 217, 237–252 (2015)

    Google Scholar 

  89. M. Sharda, R. Midha, S. Malik, S. Mukerji, N.C. Singh, Fronto-temporal connectivity is preserved during sung but not spoken word listening, across the autism spectrum. Autism Res. 8(2), 174–186 (2015)

    Google Scholar 

  90. S. Dodhia et al., Modulation of resting-state amygdala-frontal functional connectivity by oxytocin in generalized social anxiety disorder. Neuropsychopharmacology 39(9), 2061–2069 (2014)

    Google Scholar 

  91. C. Farmer, A. Thurm, P. Grant, Pharmacotherapy for the core symptoms in autistic disorder: current status of the research. Drugs 73(4), 303–314 (2013)

    Google Scholar 

  92. Y. Huang et al., Potential locations for noninvasive brain stimulation in treating autism spectrum disorders: a functional connectivity study. Front. Psych. 11, 388 (2020)

    ADS  Google Scholar 

  93. M.F. Casanova et al., Effects of transcranial magnetic stimulation therapy on evoked and induced gamma oscillations in children with autism spectrum disorder. Brain Sci. 10(7), 423 (2020)

    Google Scholar 

  94. P.G. Enticott et al., A double-blind, randomized trial of deep repetitive transcranial magnetic stimulation (rtms) for autism spectrum disorder. Brain Stimul. 7(2), 206–211 (2014)

    Google Scholar 

  95. P. Desarkar, T.K. Rajji, S.H. Ameis, Z.J. Daskalakis, Assessing and stabilizing aberrant neuroplasticity in autism spectrum disorder: the potential role of transcranial magnetic stimulation. Front. Psych. 6, 124 (2015)

    Google Scholar 

  96. G.A. Alvares, D.S. Quintana, A.J. Whitehouse, Beyond the hype and hope: critical considerations for intranasal oxytocin research in autism spectrum disorder. Autism Res. 10(1), 25–41 (2017)

    Google Scholar 

  97. Y. Aoki et al., Oxytocin’s neurochemical effects in the medial prefrontal cortex underlie recovery of task-specific brain activity in autism: a randomized controlled trial. Mol. Psychiatry 20(4), 447–453 (2015)

    Google Scholar 

  98. C.M. Michel, D. Brunet, Eeg source imaging: a practical review of the analysis steps. Front. Neurol. 10, 325 (2019)

    Google Scholar 

Download references

Acknowledgements

The study was supported by the Russian Foundation for Basic Research and National Natural Science Foundation of China (Project No. 19-52-55001) and Project 36-L-22 of the Priority 2030 program of Immanuel Kant Baltic Federal University. Data set was collected in the frame of Russian Science Foundation project No. 20-68-46042.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by SK, NS, EP, MSK, OM, OS, GP, and AH The first draft of the manuscript was written by SK and EP and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Alexander Hramov.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurkin, S., Smirnov, N., Pitsik, E. et al. Features of the resting-state functional brain network of children with autism spectrum disorder: EEG source-level analysis. Eur. Phys. J. Spec. Top. 232, 683–693 (2023). https://doi.org/10.1140/epjs/s11734-022-00717-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00717-0

Navigation