Skip to main content
Log in

Who is calling: proof of concept for the use of laser Doppler vibrometry in identifying individual callers within African elephant vocalization bouts

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We propose a novel use of laser Doppler vibrometry (LDV) for elephant field bioacoustics and behavioral ecology, allowing investigators to determine who initiates and responds within a vocalization bout. LDV has been used in a variety of applications including engineering, biomedical research, and animal communication. We present LDV data collected from one captive African elephant in a group of three elephants within an open field during vocal exchanges. While rumble vocalizations were emitted within the group, we were able to identify the caller, as well as record the call structure parameters of that specific individual’s vocalization. The rumble vocalization had a duration of 5 s, with a fundamental frequency between 17 and 20 Hz and two harmonics at approximately 40 and 60 Hz. This LDV technique could be used to identify and record individual callers within a group where it is difficult to identify the caller, and where it is not feasible to use voice-activated collars. Specifically, LDV technology would make it possible to unobtrusively record an entire “let’s go” rumble sequence while being able to identify the ordering of callers within the sequence. LDV technology may also facilitate vocal communication studies in species where identifying the caller within a group is challenging. Finally, LDV technology could inform studies focused on the physics of signal propagation of coordinated signals within group-living animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

This manuscript has associated data. [Authors’ comment: The data collected and analyzed for this study are available in the Utopia Scientific Lab GitHub repository, https://github.com/Utopia-Sci-Lab/Proof-of-Concept-LDV-Elephant-Vocalization-Bouts.]

References

  1. J.H. Poole, K. Payne, W.R. Langbauer Jr., C.J. Moss, The social contexts of some very low frequency calls of African elephants. Behav. Ecol. Sociobiol. 22(6), 385–392 (1988). https://doi.org/10.1007/BF00294975

    Article  Google Scholar 

  2. A.S. Stoeger, G. Heilmann, M. Zeppelzauer, A. Ganswindt, S. Hensman et al., Visualizing sound emission of elephant vocalizations: evidence for two rumble production types. PLoS One 7(11), e48907 (2012). https://doi.org/10.1371/journal.pone.0048907

    Article  ADS  Google Scholar 

  3. A.S. Stoeger, A. Baotic, Information content and acoustic structure of male African elephant social rumbles. Sci. Rep. 6, 27585 (2016). https://doi.org/10.1038/srep27585

    Article  ADS  Google Scholar 

  4. A. Baotic, A.S. Stoeger, Sexual dimorphism in African elephant social rumbles. PLoS One 12(5), e0177411 (2017). https://doi.org/10.1371/journal.pone.0177411

    Article  Google Scholar 

  5. K.M. Leong, A. Ortolani, K.D. Burks, J.D. Mellen, A. Savage, Quantifying acoustic and temporal characteristics of vocalizations for a group of captive African elephants Loxodonta africana. Bioacoustics 13, 213–231 (2003). https://doi.org/10.1080/09524622.2003.9753499

    Article  Google Scholar 

  6. S. Nair, R. Balakrishnan, C.S. Seelamantula, R. Sukumar, Vocalizations of wild Asian elephants (Elephas maximus): structural classification and social context. J. Acoust. Soc. Am. 126(5), 2768–2778 (2009). https://doi.org/10.1121/1.3224717

    Article  ADS  Google Scholar 

  7. C.E. O’Connell-Rodwell, J.D. Wood, M. Wyman, S. Redfield, S. Puria, L.A. Hart, Antiphonal vocal bouts associated with departures in free-ranging African elephant family groups (Loxodonta africana). Bioacoustics 21(3), 215–224 (2012). https://doi.org/10.1080/09524622.2012.686166

    Article  Google Scholar 

  8. J. Soltis, K. Leong, A. Savage, African elephant vocal communication I: antiphonal calling behavior among affiliated females. Anim. Behav. 70(3), 579–587 (2005). https://doi.org/10.1016/j.anbehav.2004.11.015

    Article  Google Scholar 

  9. R.A. Charif, R.R. Ramey, W.R. Langbauer, K.B. Payne, R.B. Martin, L.M. Brown, Spatial relationships and matrilineal kinship in African savanna elephant (Loxodonta africana) clans. Behav. Ecol. Sociobiol. 57, 327–338 (2005). https://doi.org/10.1007/s00265-004-0867-5

    Article  Google Scholar 

  10. W.R. Langbauer Jr., K.B. Payne, R.A. Charif, L. Rapaport, F. Osborn, African elephants respond to distant playbacks of low frequency conspecific calls. J. Exp. Biol. 157, 35–46 (1991). https://doi.org/10.1242/jeb.157.1.35

    Article  Google Scholar 

  11. K.A. Leighty, J. Soltis, C.M. Wesolek, A. Savage, Rumble vocalizations mediate interpartner distance in African elephants, Loxodonta africana. Anim. Behav. 76, 1601–1608 (2008). https://doi.org/10.1016/j.anbehav.2008.06.022

    Article  Google Scholar 

  12. K.B. Payne, W.R. Langbauer Jr., E.M. Thomas, Infrasonic calls of the Asian elephant (Elephas maximus). Behav. Ecol. Sociobiol. 18(4), 297–301 (1986). https://doi.org/10.1007/BF00300007

    Article  Google Scholar 

  13. J.H. Poole, C.J. Moss, Elephant mate searching: Group dynamics and vocal and olfactory communication, in The Biology of Large African Mammals in their Environment, vol. 61, ed. by P.A. Jewell, G.M.O. Maloiy (Clarendon Press, Oxford, 1989), pp.111–125. (Proceedings of Sym. Zool. Soc. Lond.)

    Google Scholar 

  14. C.J. Moss, P.C. Lee, Female social dynamics: fidelity and flexibility, in The Amboseli Elephants. ed. by C.J. Moss, H. Croze, P.C. Lee (The University of Chicago Press, Chicago, 2011), pp.205–223

    Chapter  Google Scholar 

  15. C.E. O’Connell-Rodwell, J.D. Wood, C. Kinzley, T.C. Rodwell, C. Alarcon, S.K. Wasser, R. Sapolsky, Male African elephants (Loxodonta africana) queue when the stakes are high. Ethol. Ecol. Evol. 23(4), 388–397 (2011). https://doi.org/10.1080/03949370.2011.598569

    Article  Google Scholar 

  16. K. Leighty, J. Soltis, K. Leong, A. Savage, Antiphonal exchanges in African elephants (Loxodonta africana): collective response to a shared stimulus, social facilitation, or true communicative event? Behaviour 145(3), 297–312 (2008). https://doi.org/10.1163/156853908783402885

    Article  Google Scholar 

  17. E.A. Archie, T.A. Morrison, C.A. Foley, C.J. Moss, S.C. Alberts, Dominance rank relationships among wild female African elephants, Loxodonta africana. Anim. Behav. 71, 117–127 (2006). https://doi.org/10.1016/j.anbehav.2005.03.023

    Article  Google Scholar 

  18. G. Wittemyer, J.B.A. Okello, H.B. Rasmussen, P. Arctander, S. Nyakaana, I. Douglas-Hamilton, H.R. Siegismund, Where sociality and relatedness diverge: the genetic basis for hierarchical social organization in African elephants. Proc. R. Soc. B. 276, 3513–3521 (2009). https://doi.org/10.1098/rspb.2009.0941

    Article  Google Scholar 

  19. H. Tabatabai, D.E. Oliver, J.W. Rohrbaugh, C. Papadopoulos, Novel applications of laser Doppler vibration measurements to medical imaging. Sens Imaging. 14, 13–28 (2013). https://doi.org/10.1007/s11220-013-0077-1

    Article  ADS  Google Scholar 

  20. P. Lutzmann, B. Göhler, C.A. Hill, F. van Putten, Laser vibration sensing at Fraunhofer IOSB: review and applications. Opt. Eng. 56(3), 031215 (2016). https://doi.org/10.1117/1.OE.56.3.031215

    Article  ADS  Google Scholar 

  21. J.J. Rosowski, R.P. Mehta, S.N. Merchant, Diagnostic utility of Laser-Doppler Vibrometry in conductive hearing loss with normal tympanic membrane. Otol. Neurotol. 24(2), 165–175 (2003). https://doi.org/10.1097/00129492-200303000-00008

    Article  Google Scholar 

  22. C.E. O’Connell-Rodwell, X. Guan, S. Puria, Vibrational communication in elephants: a case for bone conduction, in Biotremology: Studying Vibrational Behavior, vol. 6, ed. by P. Hill, R. Lakes-Harlan, V. Mazzoni, P. Narins, M. Virant-Doberlet, A. Wessel (Springer, Cham, 2019), pp.259–276

    Chapter  Google Scholar 

  23. G. Kastberger, F. Weihmann, T. Hoetzl, Social waves in giant honeybees (Apis dorsata) elicit nest vibrations. Naturwissenschaften 100, 595–609 (2013). https://doi.org/10.1007/s00114-013-1056-z

    Article  ADS  Google Scholar 

  24. J.C. Nieh, J. Tautz, Behavior-locked signal analysis reveals weak 200–300 Hz comb vibrations during the honeybee waggle dance. J. Exp. Biol. 203(10), 1573–1579 (2000). https://doi.org/10.1242/jeb.203.10.1573

    Article  Google Scholar 

  25. A.J. Fleming, A.A. Lindeman, A.L. Carroll, J.E. Yack, Acoustics of the mountain pine beetle (Dendroctonus ponderosae) (Curculionidae, Scolytinae): sonic, ultrasonic, and vibration characteristics. Can. J. Zool. 91, 235–244 (2013). https://doi.org/10.1139/cjz-2012-0239

    Article  Google Scholar 

  26. J. Hummel, M. Kössl, M. Nowotny, Sound-induced tympanal membrane motion in bushcrickets and its relationship to sensory output. J. Exp. Biol. 214(21), 3596–3604 (2011). https://doi.org/10.1242/jeb.054445

    Article  Google Scholar 

  27. T. Jonsson, B.D. Chivers, K.R. Brown, F.A. Sarria-S, M. Walker, F. Montealegre-Z, Chamber music: an unusual Helmholtz resonator for song amplification in a Neotropical bush-cricket (Orthoptera, Tettigoniidae). J. Exp. Biol. 220(16), 2900–2907 (2017). https://doi.org/10.1242/jeb.160234

    Article  Google Scholar 

  28. E.L. Morley, T. Steinmann, J. Casas, D. Robert, Directional cues in Drosophelia melanogaster audition: structure of acoustic flow and inter-antennal velocity differences. J. Exp. Biol. 215(14), 2405–2413 (2012). https://doi.org/10.1242/jeb.068940

    Article  Google Scholar 

  29. J. Sueur, J.F.C. Windmill, D. Robert, Tuning the drum: the mechanical basis for frequency discrimination in a Mediterranean cicada. J. Exp. Biol. 209(20), 4115–4128 (2006). https://doi.org/10.1242/jeb.02460

    Article  Google Scholar 

  30. G.W. Uetz, J.A. Roberts, D.L. Clark, J.S. Gibson, S.D. Gordon, Multimodal signals increase active space of communication by wolf spiders in a complex litter environment. Behav. Ecol. Sociobiol. 67, 1471–1482 (2013). https://doi.org/10.1007/s00265-013-1557-y

    Article  Google Scholar 

  31. D.O. Elias, A.C. Mason, W.P. Maddison, R.R. Hoy, Seismic signals in a courting male jumping spider (Araneae: Salticidae). J. Exp. Biol. 206(22), 4029–4039 (2003). https://doi.org/10.1242/jeb.00634

    Article  Google Scholar 

  32. P.M. Narins, G. Ehret, J. Tautz, Accessory pathway for sound transfer in a neotropical frog. PNAS USA 85(5), 1508–1512 (1988). https://doi.org/10.1073/pnas.85.5.1508

    Article  ADS  Google Scholar 

  33. V.S. Arch, T.U. Grafe, M. Gridi-Papp, P.M. Narins, Pure ultrasonic communication in an endemic Bornean frog. PLoS One 4(4), e5413 (2009). https://doi.org/10.1371/journal.pone.0005413

    Article  ADS  Google Scholar 

  34. J. Casas, S. Bacher, J. Tautz, R. Meyhöfer, D. Pierre, Leaf vibrations and air movements in a leafminer-parasitoid system. Biol. Control. 11(2), 147–153 (1998). https://doi.org/10.1006/bcon.1997.0593

    Article  Google Scholar 

  35. J. Casas, C. Magal, J. Sueur, Dispersive and non-dispersive waves through plants: implications for arthropod vibratory communication. Proc. R. Soc. Lond. [Biol]. 274(1613), 1087–1092 (2007). https://doi.org/10.1098/rspb.2006.0306

    Article  Google Scholar 

  36. C.J. Clark, D.O. Elias, M.B. Girard, R.O. Prum, Structural resonance and mode of flutter of hummingbird tail feathers. J. Exp. Biol. 2016(18), 3404–3413 (2013). https://doi.org/10.1242/jeb.085993

    Article  Google Scholar 

  37. K.S. Bostwick, D.O. Elias, A. Mason, F. Montealegre-Z, Resonating feathers produce courtship song. Proc. R. Soc. Lond. [Biol]. 277(1683), 835–841 (2010). https://doi.org/10.1098/rspb.2009.1576

    Article  Google Scholar 

  38. J.D. Wood, B. McCowan, W.R. Langbauer Jr., J.J. Viljoen, L.A. Hart, Classification of African elephant Loxodonta africana rumbles using acoustic parameters and cluster analysis. Bioacoustics 15, 143–161 (2005). https://doi.org/10.1080/09524622.2005.9753544

    Article  Google Scholar 

  39. R.C. Connor, R.A. Smolker, ‘Pop’ goes the dolphin: a vocalization male bottlenose dolphins produce during consortships. Behavior 133(9/10), 643–662 (1996). https://doi.org/10.1163/156853996X00404

    Article  Google Scholar 

  40. R.P. Hobson, A.R. Martin, Behaviour and dive times of Arnoux’s beaked whales, Berardius arnuxii, at narrow leads in fast ice. Can. J. Zool. 7(4:2), 388–393 (1996). https://doi.org/10.1139/z96-045

    Article  Google Scholar 

Download references

Acknowledgements

We thank the PAWS staff for assisting in this study, along with The Elephant Sanctuary for an ongoing grant, and private donors to Utopia Scientific. We would also like to thank Polytec GmbH for loaning the LDV equipment for this research.

Author information

Authors and Affiliations

Authors

Contributions

The author CEO-R conceptualized the study and acquired funding. The authors CEO-R, KS, and ES contributed to the methodology of the study and data collection. The author KS conducted the data analysis, curation, and visualization, as well as providing and maintaining the equipment. The authors CEO-R, JLB, and KS wrote the first draft of the manuscript. ES coordinated elephants, setup scenarios to inspire them to be vocal, collaborated on experimental design and implementation, and oversaw staff to make sure experimental parameters were met. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Caitlin E. O’Connell-Rodwell.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Physics of Animal Navigation. Guest editor: Miguel A. F. Sanjuán.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Connell-Rodwell, C.E., Berezin, J.L., Shambaugh, K. et al. Who is calling: proof of concept for the use of laser Doppler vibrometry in identifying individual callers within African elephant vocalization bouts. Eur. Phys. J. Spec. Top. 232, 253–259 (2023). https://doi.org/10.1140/epjs/s11734-022-00704-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00704-5

Navigation