Skip to main content
Log in

Intertwined roles of fluid–solid interactions and macroscopic flow geometry in dynamic wetting of complex fluids

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Dynamic wetting of complex fluids is an integral component of several industrial operations ranging from surface coatings to the modern 3D printing. This multifaceted interfacial phenomenon has been reviewed in the past decades either from the perspective of the solid or the fluid. However, it is fundamentally governed by the interfacial interactions between the solid and fluid. In this mini-review, we attempt to propose a general framework for studying the contact line dynamics of complex fluids that is inclusive of these interfacial interactions stemming from solid properties, fluid properties and the macroscopic flow geometry. We critically examine two interfacial phenomena involving complex fluids—spreading/wetting of blood and polymers exhibiting rod-climbing to unveil the existing scientific challenges in the domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

No data associated in the manuscript.

References

  1. J.F. Richardson, R.P. Chhabra, Non-Newtonian Flow and Applied Rheology: Engineering Applications, 2nd edn. (2008)

  2. R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymer Liquids Vol. 1. Fluid Mechanics, 2nd edn. (Wiley, Canada, 1987)

    Google Scholar 

  3. A.P. Deshpande, J.M. Krishnan, P.B.S. Kumar, Rheology of Complex Fluids, 1st edn. (Springer, New York, 2010)

    MATH  Google Scholar 

  4. G.R. Strobl, The Physics of Polymers: Concepts for Understanding Their Structures and Behavior, 3rd edn. (Springer, Berlin, 1997)

    Google Scholar 

  5. S. Baba Hamed, M. Belhadri, J. Pet. Sci. Eng. 67, 84 (2009)

    Google Scholar 

  6. H.P. Rønningsen, Annu. Trans. Nord. Rheol. Soc. 20, 11 (2012)

    Google Scholar 

  7. M. Kané, M. Djabourov, J.L. Volle, Rheology and structure of waxy crude oils in quiescent and under shearing conditions. Fuel 83, 1591 (2004)

    Google Scholar 

  8. J.F. Vélez-ruiz, G.V.B. Cánovas, M. Peleg, Crit. Rev. Food Sci. Nutr. 37, 311 (1997)

    Google Scholar 

  9. P. Fischer, E.J. Windhab, Curr. Opin. Colloid Interface Sci. 16, 36 (2011)

    Google Scholar 

  10. L. Buhse et al., Int. J. Pharm. 295, 101 (2005)

    Google Scholar 

  11. T. Kealy, A. Abram, B. Hunt, R. Buchta, Int. J. Pharm. 355, 67 (2008)

    Google Scholar 

  12. H.B. Kostenbauder, A.N. Martin, J. Am. Pharm. Assoc. 43, 401 (1954)

    Google Scholar 

  13. B. Vyas, L. Halámková, I.K. Lednev, Forensic Chem. 20, 100247 (2020)

    Google Scholar 

  14. R. June, Rheol. Acta 35, 28 (1971)

    Google Scholar 

  15. S. Gupta, W.S. Wang, S.A. Vanapalli, Biomicrofluidics 10, 043402 (2016)

    Google Scholar 

  16. S.K. Lai, Y.Y. Wang, D. Wirtz, J. Hanes, Adv. Drug Deliv. Rev. 61, 86 (2009)

    Google Scholar 

  17. T.F. Tadros, Colloids in Paints: Colloids and Interface Science, 1st edn. (Wiley, 2010)

    Google Scholar 

  18. R.R. Eley, J. Coatings Technol. Res. 16, 263 (2019)

    Google Scholar 

  19. S.G. Croll, L.W. Kisha, Prog. Org. Coatings 20, 27 (1992)

    Google Scholar 

  20. N. Cohen, A. Dotan, H. Dodiuk, S. Kenig, Mater. Manuf. Process. 31, 1143 (2016)

    Google Scholar 

  21. A. Hooda, M.S. Goyat, J.K. Pandey, A. Kumar, R. Gupta, Prog. Org. Coatings 142, 105557 (2020)

    Google Scholar 

  22. J.T. Simpson, S.R. Hunter, T. Aytug, Rep. Prog. Phys. 78, 086501 (2015)

    ADS  Google Scholar 

  23. J. Breitenbach, I.V. Roisman, C. Tropea, Exp. Fluids 59, 0 (2018)

    Google Scholar 

  24. Y.T. Aksoy, Y. Zhu, P. Eneren, E. Koos, M.R. Vetrano, Energies 14, 1 (2021)

    Google Scholar 

  25. G. Duursma, K. Sefiane, A. Kennedy, Heat Transf. Eng. 30, 1108 (2009)

    ADS  Google Scholar 

  26. B. He, S. Yang, Z. Qin, B. Wen, C. Zhang, Sci. Rep. 7, 1 (2017)

    ADS  Google Scholar 

  27. H. Wijshoff, Phys. Rep. 491, 77 (2010)

    ADS  Google Scholar 

  28. D. Lohse, Annu. Rev. Fluid Mech. 54, 349 (2021)

    ADS  Google Scholar 

  29. S. Tarafdar, Y.Y. Tarasevich, M. Dutta Choudhury, T. Dutta, D. Zang, Adv. Condens. Matter Phys. 2018, 24 (2018)

    Google Scholar 

  30. J.M. Cameron, H.J. Butler, D.S. Palmer, M.J. Baker, Biophotonics 11, e201700299 (2018)

    Google Scholar 

  31. K. Sefiane, G. Duursma, A. Arif, Adv. Colloid Interface Sci. 298, 102546 (2021)

    Google Scholar 

  32. T.D. Blake, J. Colloid Interface Sci. 299, 1 (2006)

    ADS  Google Scholar 

  33. P.G. De Gennes, Rev. Mod. Phys. 57, 827 (1985)

    ADS  Google Scholar 

  34. E.B.V. Dussan, Annu. Rev. Fluid Mech. 11, 371 (1979)

    ADS  Google Scholar 

  35. L. Chen et al., Curr. Opin. Colloid Interface Sci. 36, 46 (2018)

    ADS  Google Scholar 

  36. S. Afkhami, Curr. Opin. Colloid Interface Sci. 57, 101523 (2022)

    Google Scholar 

  37. P.G. Petrov, J.G. Petrov, J. Colloid Interface Sci 8, 37 (1992)

    Google Scholar 

  38. E.M. Blokhuis, B. Widom, Curr. Opin. Colloid Interface Sci. 1, 424 (1996)

    Google Scholar 

  39. G.H. Findenegg, S. Herminghaus, Curr. Opin. Colloid Interface Sci. 2, 301 (1997)

    Google Scholar 

  40. J. De Coninck, M.J. De Ruijter, M. Voué, Curr. Opin. Colloid Interface Sci. 6, 49 (2001)

    Google Scholar 

  41. Y. Xia, D. Qin, Y. Yin, Curr. Opin. Colloid Interface Sci. 6, 54 (2001)

    Google Scholar 

  42. M. Geoghegan, G. Krausch, Prog. Polym. Sci. 28, 261 (2003)

    Google Scholar 

  43. M. Ma, R.M. Hill, Curr. Opin. Colloid Interface Sci. 11, 193 (2006)

    Google Scholar 

  44. K. Koch, B. Bhushan, W. Barthlott, Prog. Mater. Sci. 54, 137 (2009)

    Google Scholar 

  45. D. Bonn, J. Eggers, J. Indekeu, J. Meunier, Rev. Mod. Phys. 81, 739 (2009)

    ADS  Google Scholar 

  46. N.J. Shirtcliffe, G. McHale, S. Atherton, M.I. Newton, Adv. Colloid Interface Sci. 161, 124 (2010)

    Google Scholar 

  47. L. Boinovich, A. Emelyanenko, Adv. Colloid Interface Sci. 165, 60 (2011)

    Google Scholar 

  48. B. Bhushan, Y.C. Jung, Prog. Mater. Sci. 56, 1 (2011)

    Google Scholar 

  49. E. Celia, T. Darmanin, E. Taffin de Givenchy, S. Amigoni, F. Guittard, J. Colloid Interface Sci. 402, 1 (2013)

    ADS  Google Scholar 

  50. L. Oberli, D. Caruso, C. Hall, M. Fabretto, P.J. Murphy, D. Evans, Adv. Colloid Interface Sci. 210, 47 (2014)

    Google Scholar 

  51. N.M. Valipour, F.C. Birjandi, J. Sargolzaei, Colloids Surf. A Physicochem. Eng. Asp. 448, 93 (2014)

    Google Scholar 

  52. G. Lu, X.D. Wang, Y.Y. Duan, Adv. Colloid Interface Sci. 236, 43 (2016)

    Google Scholar 

  53. D. Brutin, V. Starov, Chem. Soc. Rev. 47, 558 (2018)

    Google Scholar 

  54. U. Thiele, Colloids Surfaces A Physicochem. Eng. Asp. 553, 487 (2018)

    Google Scholar 

  55. T. Young, Philos. Trans. R. Soc. Lond. 95, 65 (1805)

    ADS  Google Scholar 

  56. A. Mohammad Karim, J. Appl. Phys. 132, 080701 (2022)

    Google Scholar 

  57. R.V. Sedev, C.J. Budziak, J.G. Petrov, A.W. Neumann, J. Colloid Interface Sci. 159, 392 (1993)

    ADS  Google Scholar 

  58. S. Sikalo, C. Tropea, E.N. Ganic, Exp. Therm. Fluid Sci. 29, 795 (2005)

    Google Scholar 

  59. R. Gajdošíková, B. Lapčíková, L. Lapčík, Phys. Chem. An Indian J. 6, 146 (2011)

    Google Scholar 

  60. O. Carrier, D. Bonn, Droplet Wetting Evaporation From Pure to Complex Fluids 431, 3 (2015)

    Google Scholar 

  61. P.J. Ramón-Torregrosa, M.A. Rodríguez-Valverde, A. Amirfazli, M.A. Cabrerizo-Vílchez, Colloids Surfaces A Physicochem. Eng. Asp. 323, 83 (2008)

    Google Scholar 

  62. B. Andreotti et al., Soft Matter 12, 2993–2996 (2016)

    ADS  Google Scholar 

  63. J. Drelich, Surf. Innov. 1, 248 (2013)

    Google Scholar 

  64. D.Y. Kwok, T. Gietzelt, K. Grundke, H.J. Jacobasch, A.W. Neumann, Langmuir 13, 2880 (1997)

    Google Scholar 

  65. Z. P. Liang, X. D. Wang, D. J. Lee, X. F. Peng, and A. Su, J. Phys. Condens. Matter 21, (2009).

  66. A. MohammadKarim, H.P. Kavehpour, Colloids Surfaces A Physicochem. Eng. Asp. 548, 54 (2018)

    Google Scholar 

  67. Z.P. Liang, X.D. Wang, Y.Y. Duan, Q. Min, Colloids Surfaces A Physicochem. Eng. Asp. 403, 155 (2012)

    Google Scholar 

  68. S. Rafaï, D. Bonn, A. Boudaoud, J. Fluid Mech. 513, 77 (2004)

    ADS  Google Scholar 

  69. S. Rafaï, D. Bonn, Phys. A Stat. Mech. Its Appl. 358, 58 (2005)

    ADS  Google Scholar 

  70. X.D. Wang, D.J. Lee, X.F. Peng, J.Y. Lai, Langmuir 23, 8042 (2007)

    Google Scholar 

  71. X. Wang, Q. Min, Z. Zhang, Y. Duan, Langmuir 34, 15612 (2018)

    Google Scholar 

  72. S.T. Thoroddsen, T.G. Etoh, K. Takehara, Annu. Rev. Fluid Mech. 40, 257 (2008)

    ADS  Google Scholar 

  73. C.H. Kung, P.K. Sow, B. Zahiri, W. Mérida, Adv. Mater. Interfaces 6, 1 (2019)

    Google Scholar 

  74. A. Krishnan, Y.H. Liu, P. Cha, R. Woodward, D. Allara, E.A. Vogler, Colloids Surfaces B Biointerfaces 43, 95 (2005)

    Google Scholar 

  75. G.T. Smedley, D.E. Coles, J. Colloid Interface Sci. 286, 310 (2005)

    ADS  Google Scholar 

  76. Q. Min, Y.Y. Duan, X.D. Wang, Z.P. Liang, C. Si, J. Colloid Interface Sci. 362, 221 (2011)

    ADS  Google Scholar 

  77. Q. Min, Y.Y. Duan, X.D. Wang, Z.P. Liang, D.J. Lee, A. Su, J. Colloid Interface Sci. 348, 250 (2010)

    ADS  Google Scholar 

  78. G. Ahmed, M. Sellier, Y.C. Lee, M. Jermy, M. Taylor, Colloids Surfaces A Physicochem. Eng. Asp. 432, 2 (2013)

    Google Scholar 

  79. S.K. Singh, B.S. Dandapat, Colloids Surfaces A Physicochem. Eng. Asp. 419, 228 (2013)

    Google Scholar 

  80. Q. Min, Y.Y. Duan, X.D. Wang, Z.P. Liang, D.J. Lee, Int. J. Thermophys. 34, 2276 (2013)

    ADS  Google Scholar 

  81. M. Iwamatsu, Phys. Rev. E (2017). https://doi.org/10.1103/PhysRevE.96.012803

    Article  Google Scholar 

  82. A. Mohammad Karim, W.J. Suszynski, S. Pujari, L.F. Francis, M.S. Carvalho, Phys. Fluids 33, 103103 (2021)

    ADS  Google Scholar 

  83. Z.P. Liang, X.D. Wang, Y.Y. Duan, Q. Min, C. Wang, D.J. Lee, Langmuir 26, 14594 (2010)

    Google Scholar 

  84. B. Andreotti, J.H. Snoeijer, Annu. Rev. Fluid Mech. 52, 285 (2020)

    ADS  Google Scholar 

  85. P.F. Ibáñez-Ibáñez, F.J. Montes Ruiz-Cabello, M.A. Cabrerizo-Vílchez, M.A. Rodríguez-Valverde, J. Colloid Interface Sci. 589, 166 (2021)

    ADS  Google Scholar 

  86. S. Karpitschka, S. Das, M. Van Gorcum, H. Perrin, B. Andreotti, J.H. Snoeijer, Nat. Commun. 6, 5 (2015)

    Google Scholar 

  87. D. Brutin, B. Sobac, C. Nicloux, J. Heat Transfer 134, 1 (2012)

    Google Scholar 

  88. J. Jing et al., Proc. Natl. Acad. Sci. USA 95, 8046 (1998)

    ADS  Google Scholar 

  89. D. Brutin, B. Sobac, B. Loquet, J. Sampol, J. Fluid Mech. 667, 85 (2011)

    ADS  Google Scholar 

  90. Q. Zhang, D. Tomazela, L.A. Vasicek, D.S. Spellman, M. Beaumont, B. Shyong, J. Kenny, S. Fauty, K. Fillgrove, J. Harrelson, K.P. Bateman, Bioanalysis 8, 649 (2016)

    Google Scholar 

  91. T.C. Chao, A. Trybala, V. Starov, D.B. Das, Colloids Surfaces A Physicochem. Eng. Asp. 451, 38 (2014)

    Google Scholar 

  92. T.C. Chao, O. Arjmandi-Tash, D.B. Das, V.M. Starov, Colloids Surfaces A Physicochem. Eng. Asp. 505, 9 (2016)

    Google Scholar 

  93. P. Kumar, P. Agrawal, K. Chatterjee, J. Pharm. Biomed. Anal. 175, 112772 (2019)

    Google Scholar 

  94. O. Jonsson et al., Bioanalysis 4, 661 (2012)

    Google Scholar 

  95. G. Ahmed, O. Arjmandi Tash, J. Cook, A. Trybala, V. Starov, Adv. Colloid Interface Sci. 249, 17 (2017)

    Google Scholar 

  96. D. Brutin, H. Benabdelhalim, Spreading, Wetting and Drying of Human Blood (Springer, New York, 2022)

    Google Scholar 

  97. M. Diez-Silva, M. Dao, J. Han, C.-T. Lim, S. Suresh, MRS Bull. 35, 382–388 (2010)

    Google Scholar 

  98. A.S. Weyrich, G.A. Zimmerman, Annu Rev Physiol 75, 569 (2013)

    Google Scholar 

  99. A. Trybala, V. Starov, Curr. Opin. Colloid Interface Sci. 36, 84 (2018)

    Google Scholar 

  100. T.C. Chao, O. Arjmandi-Tash, D.B. Das, V.M. Starov, J. Colloid Interface Sci. 446, 218 (2015)

    ADS  Google Scholar 

  101. O. Arjmandi-Tash, N.M. Kovalchuk, A. Trybala, I.V. Kuchin, V. Starov, Langmuir 33, 4367 (2017)

    Google Scholar 

  102. W. Bou-Zeid, D. Brutin, Colloids Surfaces A Physicochem. Eng. Asp. 456, 273 (2014)

    Google Scholar 

  103. M. Mukhopadhyay, U.U. Ghosh, D. Sarkar, S. Dasgupta, Soft Matter 14, 7335 (2018)

    ADS  Google Scholar 

  104. L.H. Tanner, J. Phys.-D. 12, 1473–1484 (1979)

    ADS  Google Scholar 

  105. H. Bodiguel, F. Doumenc, B. Guerrier, Langmuir 26, 10758 (2010)

    Google Scholar 

  106. D. Brutin, Colloids Surfaces A Physicochem. Eng. Asp. 429, 112 (2013)

    Google Scholar 

  107. W. Bou Zeid, D. Brutin, Colloids Surfaces A Physicochem. Eng. Asp. 430, 1 (2013)

    Google Scholar 

  108. J.S. Horner, N.J. Wagner, A.N. Beris, Soft Matter 17, 4766 (2021)

    ADS  Google Scholar 

  109. M. Reiner, G.W.S. Blair, H.B. Hawley, J. Soc. Chem. Ind. 68, 327 (1949)

    Google Scholar 

  110. H.G. Muller, Genetics 46, 213 (1961)

    Google Scholar 

  111. J.M. Dealy, T.K.P. Vu, J. Nonnewton, Fluid Mech. 3, 127 (1977)

    Google Scholar 

  112. A.S. Lodge, J.D. Schieber, R.B. Bird, J. Chem. Phys. 88, 4001 (1988)

    ADS  Google Scholar 

  113. G.S. Beavers, D.D. Joseph, J. Fluid Mech. 69, 475 (1975)

    ADS  Google Scholar 

  114. N.K. Chandra, U.U. Ghosh, A. Saha, A. Kumar, Langmuir 37, 14785 (2021)

    Google Scholar 

  115. X.L. Luo, Comput. Methods Appl. Mech. Eng. 180, 393 (1999)

    ADS  Google Scholar 

  116. B. Debbaut, B. Hocq, J. Nonnewton, Fluid Mech. 43, 103 (1992)

    Google Scholar 

  117. F. Habla, H. Marschall, O. Hinrichsen, L. Dietsche, H. Jasak, J.L. Favero, Chem. Eng. Sci. 66, 5487 (2011)

    Google Scholar 

  118. R.A. Figueiredo, C.M. Oishi, A.M. Afonso, I.V.M. Tasso, J.A. Cuminato, Int. J. Multiph. Flow 84, 98 (2016)

    MathSciNet  Google Scholar 

  119. C.Y. Hui, A. Jagota, J. Appl. Phys. 120, 195301 (2016)

    ADS  Google Scholar 

  120. A. Groisman, M. Enzelberger, S.R. Quake, Science (80-). 300, 955 (2003)

    ADS  Google Scholar 

  121. G.M. Whitesides, Nature 442, 368 (2006)

    ADS  Google Scholar 

  122. X. Mei, Q. Chen, S. Wang, W. Wang, D. Wu, D. Sun, Nanoscale 10, 7127 (2018)

    Google Scholar 

  123. H. He, M. Gao, D. Torok, K. Molnar, Polymer (Guildf). 190, 122247 (2020)

    Google Scholar 

Download references

Acknowledgements

UUG acknowledges support by the IIT (BHU) through seed grant (Grant no. IIT (BHU)/Budget/19-(5)/2021-22/4885).

Author information

Authors and Affiliations

Authors

Contributions

MVRS, PY, and BT equally contributed in writing the manuscript. UUG conceived the idea, wrote the original draft and reviewed it.

Corresponding author

Correspondence to Udita U. Ghosh.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts to declare.

Additional information

Fluid-Fluid and Fluid-Soft Matter Interaction. Guest editors: Saptarshi Basu, Aloke Kumar.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudheer, M.V.R., Yadav, P., Thomas, B. et al. Intertwined roles of fluid–solid interactions and macroscopic flow geometry in dynamic wetting of complex fluids. Eur. Phys. J. Spec. Top. 232, 769–780 (2023). https://doi.org/10.1140/epjs/s11734-022-00703-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00703-6

Navigation