Skip to main content
Log in

Difference recurrence plots for structural inspection using guided ultrasonic waves

A new approach for evaluation of small signal differences

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We propose a novel recurrence plot-based approach, the difference recurrence plot (DRP), to detect small deviations between measurements. By using a prototypical model system, we demonstrate the potential of DRPs and the difference to alternative measures, such as Pearson correlation, spectral analysis, or cross and joint recurrence analysis. Real-world data comes from an application of guided ultrasonic waves for structural health monitoring to detect damages in a composite plate. The specific challenge for this damage detection is to differentiate between defects and the influence of temperature. We show that DRPs are suited in the following sense: DRPs of two time series that derive from measurements at different temperatures hold practically full recurrence, whereas DRPs of one time series from a measurement without and one time series with defect show a hugely reduced recurrence rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability statement

This manuscript has associated data in a data repository. [Authors’ comment: Matlab Code for computations in chapter 3 and Python Code for RQA computations in chapter 4 can be found at Zenodo https://doi.org/10.5281/zenodo.7229221.]

References

  1. A. Fahr, Aeronautical Applications of Non-destructive Testing. DEStech Publ., Lancaster, PA, (2014). ID: 865496112

  2. C. Brandt. Recurrence Quantification Compared to Fourier Analysis for Ultrasonic Non-Destructive Testing of Carbon Fibre Reinforced Polymers. Phd thesis, Universität Bremen, (2020)

  3. B. Maack, C. Brandt, M. Koerdt, C. Polle, A.S. Herrmann, Continuous baseline update using recurrence quantification analysis for damage detection with guided ultrasonic waves. Eur. Phys. J. Spec. Top. 2, 2 (2022)

    Google Scholar 

  4. N. Marwan, J. Kurths, Nonlinear analysis of bivariate data with cross recurrence plots. Phys. Lett. A 302(5–6), 299–307 (2002). https://doi.org/10.1016/S0375-9601(02)01170-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. M.C. Romano, M. Thiel, J. Kurths, I.Z. Kiss, J.L. Hudson, Detection of synchronization for non-phase-coherent and non-stationary data. Europhys. Lett. 71(3), 466–472 (2005). https://doi.org/10.1209/epl/i2005-10095-1

    Article  ADS  Google Scholar 

  6. M.C. Romano, M. Thiel, J. Kurths, W. von Bloh, Multivariate recurrence plots. Phys. Lett. A 330(3–4), 214–223 (2004). https://doi.org/10.1016/j.physleta.2004.07.066

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Y. Hirata, K. Aihara, Identifying hidden common causes from bivariate time series: A method using recurrence plots. Phys. Rev. E 81(1), 016203 (2010). https://doi.org/10.1103/PhysRevE.81.016203

    Article  ADS  Google Scholar 

  8. J.H. Feldhoff, R.V. Donner, J.F. Donges, N. Marwan, J. Kurths, Geometric detection of coupling directions by means of inter-system recurrence networks. Phys. Lett. A 376(46), 3504–3513 (2012). https://doi.org/10.1016/j.physleta.2012.10.008

    Article  ADS  Google Scholar 

  9. A. Facchini, H. Kantz, E.B.P. Tiezzi, Recurrence plot analysis of nonstationary data: The understanding of curved patterns. Phys. Rev. E 72, 021915 (2005). https://doi.org/10.1103/PhysRevE.72.021915

    Article  ADS  MathSciNet  Google Scholar 

  10. N. Marwan, How to avoid potential pitfalls in recurrence plot based data analysis. Int. J. Bifurcat. Chaos 21(4), 1003–1017 (2011). https://doi.org/10.1142/S0218127411029008

    Article  MathSciNet  MATH  Google Scholar 

  11. N. Marwan, M.C. Romano, M. Thiel, J. Kurths, Recurrence plots for the analysis of complex systems. Phys. Rep. 438(5–6), 237–329 (2007). https://doi.org/10.1016/j.physrep.2006.11.001

    Article  ADS  MathSciNet  Google Scholar 

  12. K.H. Kraemer, R.V. Donner, J. Heitzig, N. Marwan, Recurrence threshold selection for obtaining robust recurrence characteristics in different embedding dimensions. Chaos 28(8), 085720 (2018). https://doi.org/10.1063/1.5024914

    Article  ADS  MathSciNet  Google Scholar 

  13. N. Marwan, M. Thiel, N.R. Nowaczyk, Cross recurrence plot based synchronization of time series. Nonlinear Process. Geophys. 9(3/4), 325–331 (2002). https://doi.org/10.5194/npg-9-325-2002

    Article  ADS  Google Scholar 

  14. N.V. Zolotova, D.I. Ponyavin, Phase asynchrony of the north-south sunspot activity. Astron. Astrophys. 449(1), L1–L4 (2006). https://doi.org/10.1051/0004-6361:200600013

    Article  ADS  Google Scholar 

  15. A.M.T. Ramos, A. Builes-Jaramillo, G. Poveda, B. Goswami, E.E.N. Macau, J. Kurths, N. Marwan, Recurrence measure of conditional dependence and applications. Phys. Rev. E 95, 052206 (2017). https://doi.org/10.1103/PhysRevE.95.052206

    Article  ADS  Google Scholar 

  16. M.I. Coco, R. Dale, F. Keller, Performance in a collaborative search task: The role of feedback and alignment. Top. Cogn. Sci. 10(1), 55–79 (2018). https://doi.org/10.1111/tops.12300

    Article  Google Scholar 

  17. N. Marwan, Y. Zou, N. Wessel, M. Riedl, J. Kurths, Estimating coupling directions in the cardio-respiratory system using recurrence properties. Phil. Trans. R. Soc. A 371(1997), 20110624 (2013). https://doi.org/10.1098/rsta.2011.0624

    Article  ADS  MATH  Google Scholar 

  18. A. Builes-Jaramillo, N. Marwan, G. Poveda, J. Kurths, Nonlinear interactions between the Amazon River basin and the Tropical North Atlantic at interannual timescales. Clim. Dyn. 50(7–8), 2951–2969 (2018). https://doi.org/10.1007/s00382-017-3785-8

    Article  Google Scholar 

  19. J.H. Feldhoff, R.V. Donner, J.F. Donges, N. Marwan, J. Kurths, Geometric signature of complex synchronisation scenarios. Europhys. Lett. 102(3), 30007 (2013). https://doi.org/10.1209/0295-5075/102/30007

    Article  ADS  Google Scholar 

  20. T. Takamatsu, K. Yaginuma, T. Nakajima, Asynchrony estimation of solar irradiance by quantification of joint recurrence plot. IEEE (2019). https://doi.org/10.1109/ICRERA47325.2019.8996732

    Article  Google Scholar 

  21. R. Proulx, P. Côté, L. Parrott, Use of recurrence analysis to measure the dynamical stability of a multi-species community model. Eur. Phys. J. Spec. Top. 164(1), 117–126 (2008). https://doi.org/10.1140/epjst/e2008-00838-0

    Article  Google Scholar 

  22. T. Semeraro, R. Buccolieri, M. Vergine, L. De Bellis, A. Luvisi, R. Emmanuel, N. Marwan, Analysis of the olive groves destructions by xylella fastidosa bacterium effect on the land surface temperature in salento detected using satellite images. Forests 12, 1266 (2021). https://doi.org/10.3390/f12091266

    Article  Google Scholar 

  23. www.openguidedwaves.de. http://openguidedwaves.de/ (2022)

  24. J. Moll, J. Kathol, C-P. Fritzen, M. Moix-Bonet, M. Rennoch, M. Koerdt, A.S. Herrmann, M.GR. Sause, M. Bach, Open Guided Waves: online platform for ultrasonic guided wave measurements. Struct. Health Monit. 18(5–6), 1903–1914 (2019). https://doi.org/10.1177/1475921718817169

    Article  Google Scholar 

  25. J. Moll, C. Kexel, S. Pötzsch, M. Rennoch, A.S. Herrmann, Temperature affected guided wave propagation in a composite plate complementing the Open Guided Waves Platform. Sci. Data 6, 1 (2019). https://doi.org/10.1038/s41597-019-0208-1

    Article  Google Scholar 

  26. J.P. Zbilut, C.L. Webber Jr., Embeddings and delays as derived from quantification of recurrence plots. Phys. Lett. A 171(3–4), 199–203 (1992). https://doi.org/10.1016/0375-9601(92)90426-M

    Article  ADS  Google Scholar 

  27. N. Marwan, N. Wessel, U. Meyerfeldt, A. Schirdewan, J. Kurths, Recurrence plot based measures of complexity and its application to heart rate variability data. Phys. Rev. E 66(2), 026702 (2002). https://doi.org/10.1103/PhysRevE.66.026702

    Article  ADS  MATH  Google Scholar 

  28. S. Schinkel, O. Dimigen, N. Marwan, Selection of recurrence threshold for signal detection. Eur. Phys. J. Spec. Top. 164(1), 45–53 (2008). https://doi.org/10.1140/epjst/e2008-00833-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Brandt.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandt, C., Marwan, N. Difference recurrence plots for structural inspection using guided ultrasonic waves. Eur. Phys. J. Spec. Top. 232, 69–81 (2023). https://doi.org/10.1140/epjs/s11734-022-00701-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00701-8

Navigation