Skip to main content

Advertisement

Log in

Synchronization and energy balance of star network composed of photosensitive neurons

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The information processing and encoding of nervous system requires complete collaboration of a large number of neurons in different functional regions of the brain, and the synchronization stability indicates the cooperative and competitive behaviors among neurons. Unusual synchronization is the main manifestation of brain functional diseases. It is an effective method to adjust the synchronization state of neurons by applying external stimulation. Indeed, quick creation and connection of synapses to neurons with appropriate intensity can regulate the collective behaviors of neurons effectively, and then, the energy diversity can be decreased to achieve energy balance. In this paper, a phototube is incorporated into a simple FitzHugh–Nagumo neural circuit for obtaining a light-sensitive neuron model, which is capable for simulating the neural activities in visual neurons. A star network is designed by connecting four photosensitive neurons with electric synapse. The coupling channel is controlled with an adaptive criterion and the coupling intensity is exponentially enhanced to a saturation threshold before the energy diversity between neurons reaches a tiny threshold. It is found that all identical neurons realize complete synchronization and energy balance no matter whether the neurons are presented in spiking, bursting, or chaotic patterns. Nevertheless, phase lock phenomenon occurs in the network when neurons are activated with showing different firing modes, and energy is pumped continuously along the coupling channels even the coupling intensity is further increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.H. Strogatz, Exploring complex networks. Nature 401(6825), 268–276 (2001)

    ADS  MATH  Google Scholar 

  2. R. Albert, A.L. Barabasi, Statistical mechanics of complex networks. Rev. Modern Phys. 74(1), 47–97 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  3. M.E.J. Newman, The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  4. A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Google Scholar 

  5. R.E. Plant, M. Kim, Mathematical description of a bursting pacemaker neuron by a modification of the Hodgkin-Huxley equations. Biophys. J. 16(3), 227–244 (1976)

    ADS  Google Scholar 

  6. J.L. Hindmarsh, R.M. Rose, A model of the nerve impulse using two first-order differential equations. Nature 296(5853), 162–164 (1982)

    ADS  Google Scholar 

  7. J. Nagumo, S. Arimoto, S. Yoshizawa, An active pulse transmission line simulating nerve axon. Proc. IRE 50(10), 2061–2070 (1962)

    Google Scholar 

  8. K. Tsumoto, H. Kitajima, T. Yoshinaga et al., Bifurcations in Morris-Lecar neuron model. Neurocomputing 69(4–6), 293–316 (2006)

    Google Scholar 

  9. B.C. Bao, Y.X. Zhu, J. Ma et al., Memristive neuron model with an adapting synapse and its hardware experiments. Sci. China Technol. Sci. 64(5), 1107–1117 (2021)

    ADS  Google Scholar 

  10. Y. Liu, W. Xu, J. Ma et al., A new photosensitive neuron model and its dynamics. Front. Inf. Technol. Electron. Eng. 21(9), 1387–1396 (2020)

    Google Scholar 

  11. P. Zhou, Z. Yao, J. Ma et al., A piezoelectric sensing neuron and resonance synchronization between auditory neurons under stimulus. Chaos Solit. Fractals 145, 110751 (2021)

    MathSciNet  Google Scholar 

  12. Y. Xu, Y. Guo, G. Ren et al., Dynamics and stochastic resonance in a thermosensitive neuron. Appl. Math. Comput. 385, 125427 (2020)

    MathSciNet  MATH  Google Scholar 

  13. W. Wei, Synchronization of coupled chaotic Hindmarsh Rose neurons: an adaptive approach. Chin. Phys. B 10(24), 97–104 (2015)

    Google Scholar 

  14. W.Q. She, M.H. Ma, Tracking synchronization of networked lagrangian systems via impulsive control and its applications. J. Syst. Sci. Complexity 32(4), 1093–1103 (2019)

    MathSciNet  MATH  Google Scholar 

  15. F. Al Shargie, T.B. Tang, M. Kiguchi, Stress assessment based on decision fusion of EEG and fnirs signals. IEEE Access 8(5), 19889–19896 (2017)

    Google Scholar 

  16. X. Sun, G. Li, Synchronization transitions induced by partial time delay in a excitatory-inhibitorycoupled neuronal network. Nonlinear Dyn. 89(4), 2509–2520 (2017)

    MathSciNet  Google Scholar 

  17. G. Rigatos, Robust synchronization of coupled neural oscillators using the derivative-free nonlinear Kalman filter. Cogn. Neurodyn. 8(6), 465–478 (2014)

    Google Scholar 

  18. Y. Xu, Y. Jia, J. Ma et al., Synchronization between neurons coupled by memristor. Chaos Solit. Fractals 104, 435–442 (2017)

    ADS  Google Scholar 

  19. H.D.I. Abarbanel, R. Huerta, M.I. Rabinovich et al., Synchronized action of synaptically coupled chaotic model neurons. Neural Comput. 8(8), 1567–1602 (1996)

    Google Scholar 

  20. Y. Zhang, C.N. Wang, J. Tang et al., Phase coupling synchronization of FHN neurons connected by a Josephson junction. Sci. China Technol. Sci. 63(11), 2328–2338 (2020)

    ADS  Google Scholar 

  21. Z. Yao, P. Zhou, Z. Zhu et al., Phase synchronization between a light-dependent neuron and a thermosensitive neuron. Neurocomputing 423, 518–534 (2021)

    Google Scholar 

  22. Y. Guo, Z. Zhu, C. Wang et al., Coupling synchronization between photoelectric neurons by using memristive synapse. Optik 218, 164993 (2020)

    ADS  Google Scholar 

  23. Y. Xie, Z. Yao, X. Hu et al., Enhance sensitivity to illumination and synchronization in light-dependent neurons. Chinese Phys. B (2021)

  24. Z. Zhu, G. Ren, X. Zhang et al., Effects of multiplicative-noise and coupling on synchronization in thermosensitive neural circuits. Chaos Solit. Fractals 151, 111203 (2021)

    MathSciNet  Google Scholar 

  25. J.T. Fossi, V. Deli, H.C. Edima et al., Phase synchronization between two thermo-photoelectric neurons coupled through a Josephson Junction. Eur. Phys. J. B 95(4), 1–17 (2022)

    Google Scholar 

  26. A. Calim, J.J. Torres, M. Ozer et al., Chimera states in hybrid coupled neuron populations. Neural Netw. 126, 108–117 (2020)

    Google Scholar 

  27. R.M.G. Reinhart, J.A. Nguyen, Working memory revived in older adults by synchronizing rhythmic brain circuits. Nat. Neurosci. 22(5), 820–827 (2019)

    Google Scholar 

  28. A. Calim, P. Hövel, M. Ozer et al., Chimera states in networks of type-I Morris-Lecar neurons. Phys. Rev. E 98(6), 062217 (2018)

    ADS  MathSciNet  Google Scholar 

  29. M.S. Kafraj, F. Parastesh, S. Jafari, Firing patterns of an improved Izhikevich neuron model under the effect of electromagnetic induction and noise. Chaos Solit. Fractals 137, 109782 (2020)

    MathSciNet  Google Scholar 

  30. M.M. Ibrahim, M.A. Kamran, M.M.N. Mannan et al., Lag synchronization of coupled time-delayed FitzHugh-Nagumo neural networks via feedback control. Sci. Rep. 11(1), 1–15 (2021)

    Google Scholar 

  31. W. Du, L. Xiao, Coherence resonance and noise-induced synchronization in Hindmarsh-Rose neural network with different topologies. Commun. Theor. Phys. 48(4), 759–762 (2007)

    ADS  Google Scholar 

  32. M. Masoliver, C. Masoller, A. Zakharova, Control of coherence resonance in multiplex neural networks. Chaos Solit. Fractals 145, 110666 (2021)

    MathSciNet  MATH  Google Scholar 

  33. C. Phan, Y. You, Synchronization of boundary coupled Hindmarsh-Rose neuron network. Nonlinear Anal. Real World Appl. 55, 103139 (2020)

    MathSciNet  MATH  Google Scholar 

  34. M. Ge, Y. Jia, J.B. Kirunda et al., Propagation of firing rate by synchronization in a feed-forward multilayer Hindmarsh-Rose neural network. Neurocomputing 320, 60–68 (2018)

    Google Scholar 

  35. M. Ge, Y. Jia, Y. Xu et al., Wave propagation and synchronization induced by chemical autapse in chain Hindmarsh-Rose neural network. Appl. Math. Comput. 352, 136–145 (2019)

    MathSciNet  MATH  Google Scholar 

  36. C.B. Tabi, A.S. Etémé, A. Mohamadou et al., Unstable discrete modes in Hindmarsh-Rose neural networks under magnetic flow effect. Chaos Solit. Fractals 123, 116–123 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Y.H. Zheng, Q.S. Lu, Spatiotemporal patterns and chaotic burst synchronization in a small-world neuronal network. Physica A 387(14), 3719–3728 (2008)

    ADS  Google Scholar 

  38. M. Wang, Z. Hou, H. Xin, Ordering spatiotemporal Chaos in small-world neuron networks. ChemPhysChem 7(3), 579–582 (2006)

    Google Scholar 

  39. B. Percha, R. Dzakpasu, M. Żochowski et al., Transition from local to global phase synchrony in small world neural network and its possible implications for epilepsy. Phys. Rev. E 72(3), 031909 (2005)

    ADS  Google Scholar 

  40. F. Li, S. Liu, X. Li, Pattern selection in thermosensitive neuron network induced by noise. Physica A 589, 126627 (2022)

    MATH  Google Scholar 

  41. Y. Xu, J. Ma, Pattern formation in a thermosensitive neural network. Commun. Nonlinear Sci. Numer. Simul. 111, 106426 (2022)

    MathSciNet  MATH  Google Scholar 

  42. I. Hussain, S. Jafari, D. Ghosh et al., Synchronization and chimeras in a network of photosensitive FitzHugh-Nagumo neurons. Nonlinear Dyn. 104(3), 2711–2721 (2021)

    Google Scholar 

  43. Z. Yao, C. Wang, Control the collective behaviors in a functional neural network. Chaos Solit. Fractals 152, 111361 (2021)

    MathSciNet  MATH  Google Scholar 

  44. S. Dong, H. Zhu, S. Zhong et al., New study on fixed-time synchronization control of delayed inertial memristive neural networks. Appl. Math. Comput. 399, 126035 (2021)

    MathSciNet  MATH  Google Scholar 

  45. F. Kong, Q. Zhu, R. Sakthivel et al., Fixed-time synchronization analysis for discontinuous fuzzy inertial neural networks with parameter uncertainties. Neurocomputing 422, 295–313 (2021)

    Google Scholar 

  46. Y. Cao, W. Jiang, J. Wang, Anti-synchronization of delayed memristive neural networks with leakage term and reaction-diffusion terms. Knowl.-Based Syst. 233, 107539 (2021)

    Google Scholar 

  47. R. Li, J. Cao, C. Xue et al., Quasi-stability and quasi-synchronization control of quaternion-valued fractional-order discrete-time memristive neural networks. Appl. Math. Comput. 395, 125851 (2021)

    MathSciNet  MATH  Google Scholar 

  48. Q. Lai, C. Lai, P.D.K. Kuate et al., Chaos in a simplest cyclic Memristive Neural Network. Int. J. Bifurc. Chaos 32(03), 2250042 (2022)

    MathSciNet  MATH  Google Scholar 

  49. A. Kashkynbayev, A. Issakhanov, M. Otkel et al., Finite-time and fixed-time synchronization analysis of shunting inhibitory memristive neural networks with time-varying delays. Chaos Solit. Fractals 156, 111866 (2022)

    MathSciNet  Google Scholar 

  50. H. Bao, Y. Zhang, W. Liu et al., Memristor synapse-coupled memristive neuron network: synchronization transition and occurrence of chimera. Nonlinear Dyn. 100(1), 937–950 (2020)

    MATH  Google Scholar 

  51. D. Premraj, K. Suresh, K. Thamilmaran, Effect of processing delay on bifurcation delay in a network of slow-fast oscillators. Chaos: Interdisciplin. J. Nonlinear Sci. 29(12), 123127 (2019)

    MathSciNet  MATH  Google Scholar 

  52. D. Premraj, K. Suresh, T. Banerjee et al., Bifurcation delay in a network of locally coupled slow-fast systems. Phys. Rev. E 98(2), 022206 (2018)

    ADS  MathSciNet  Google Scholar 

  53. F. Parastesh, K. Rajagopal, S. Jafari et al., Blinking coupling enhances network synchronization. Phys. Rev. E 105(5), 054304 (2022)

    ADS  MathSciNet  Google Scholar 

  54. K. Sathiyadevi, V.K. Chandrasekar, D.V. Senthilkumar, Inhomogeneous to homogeneous dynamical states through symmetry breaking dynamics. Nonlinear Dyn. 98(1), 327–340 (2019)

    MATH  Google Scholar 

  55. A. Foroutannia, M. Ghasemi, F. Parastesh et al., Complete dynamical analysis of a neocortical network model. Nonlinear Dyn. 100(3), 2699–2714 (2020)

    Google Scholar 

  56. M. Shafiei, S. Jafari, F. Parastesh et al., Time delayed chemical synapses and synchronization in multilayer neuronal networks with ephaptic inter-layer coupling. Commun. Nonlinear Sci. Numer. Simul. 84, 105175 (2020)

    MathSciNet  MATH  Google Scholar 

  57. S. Binczak, S. Jacquir, J.M. Bilbault et al., Experimental study of electrical FitzHugh-Nagumo neurons with modified excitability. Neural Netw. 19(5), 684–693 (2006)

    MATH  Google Scholar 

  58. R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane. Biophys. J . 1(6), 445–466 (1961)

    Google Scholar 

  59. I.M. Kyprianidis, V. Papachristou, I.N. Stouboulos et al., Dynamics of coupled chaotic Bonhoeffer-van der Pol oscillators. WSEAS Trans. Syst. 11(9), 516–526 (2012)

    Google Scholar 

Download references

Acknowledgements

This research is partly supported by the National Natural Science Foundation of China under Grant No. 12062009.

Author information

Authors and Affiliations

Authors

Contributions

FY finished the numerical calculation and wrote the original draft. JM suggested this project and wrote the final version.

Corresponding author

Correspondence to Jun Ma.

Ethics declarations

Conflict of interest

All authors declare that we have no competing financial interests in publishing this paper.

Additional information

Collective Behavior of Nonlinear Dynamical Oscillators. Guest editors: Sajad Jafari, Bocheng Bao, Christos Volos, Fahimeh Nazarimehr, Han Bao.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Ma, J. Synchronization and energy balance of star network composed of photosensitive neurons. Eur. Phys. J. Spec. Top. 231, 4025–4035 (2022). https://doi.org/10.1140/epjs/s11734-022-00698-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00698-0

Navigation