Skip to main content
Log in

Multi-droplets non-coalescence on open-chip electrowetting platform

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The droplet non-coalescence is an interesting phenomenon that is observed in nature. This phenomenon of non-coalescence is slightly counter-intuitive as we expect liquid interfaces of the same surface tension to merge when they come in contact. However, with the help of modulating oil film in between the liquid interface, non-coalescence is observed for long durations. In this work, we have achieved the non-coalescence of multiple compound droplets on a coplanar EWOD device. The effect of droplet volume on the non-coalescence phenomenon has been studied in two-droplet systems. We have obtained the non-coalescence regime map for different operating parameters of applied voltage and frequency. We have also explored three-droplet systems and obtained a non-coalescence regime. This open-chip coplanar EWOD device configuration can be used to scale up this phenomenon to multiple droplets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data are available from authors on request.

References

  1. K. Choi, A.H.C. Ng, R. Fobel, A.R. Wheeler, Digital microfluidics. Annu. Rev. Anal. Chem. 5, 413–440 (2012). https://doi.org/10.1146/annurev-anchem-062011-143028

    Article  Google Scholar 

  2. A. Renaudin, P. Tabourier, J.C. Camart, C. Druon, Surface acoustic wave two-dimensional transport and location of microdroplets using echo signal. J. Appl. Phys. 100, 1–4 (2006). https://doi.org/10.1063/1.2388725

    Article  Google Scholar 

  3. Y. Zhang, N.T. Nguyen, Magnetic digital microfluidics - a review. Lab Chip 17, 994–1008 (2017). https://doi.org/10.1039/c7lc00025a

    Article  Google Scholar 

  4. T.B. Jones, M. Gunji, M. Washizu, M.J. Feldman, Dielectrophoretic liquid actuation and nanodroplet formation. J. Appl. Phys. 89, 1441–1448 (2001). https://doi.org/10.1063/1.1332799

    Article  ADS  Google Scholar 

  5. M. Dupeyrat, E. Nakache, Electrocapillarity and electroadsorption. J. Colloid Interface Sci. 73, 332–344 (1980). https://doi.org/10.1016/0021-9797(80)90080-6

    Article  ADS  Google Scholar 

  6. F. Mugele, J.C. Baret, Electrowetting: from basics to applications. J. Phys. Condens. Matter (2005). https://doi.org/10.1088/0953-8984/17/28/R01

    Article  Google Scholar 

  7. C. Quilliet, B. Berge, Electrowetting: a recent outbreak. Curr. Opin. Colloid Interface Sci. 6, 34–39 (2001). https://doi.org/10.1016/S1359-0294(00)00085-6

    Article  Google Scholar 

  8. S. Bansal, P. Sen, Mixing enhancement by degenerate modes in electrically actuated sessile droplets. Sens. Actuators B Chem. 232, 318–326 (2016). https://doi.org/10.1016/J.SNB.2016.03.109

    Article  Google Scholar 

  9. K.N. Nampoothiri, M.S. Seshasayee, V. Srinivasan, M.S. Bobji, P. Sen, Direct heating of aqueous droplets using high frequency voltage signals on an EWOD platform. Sens. Actuators B Chem. 273, 862–872 (2018). https://doi.org/10.1016/j.snb.2018.06.091

    Article  Google Scholar 

  10. S. Bansal, P. Sen, Electrowetting based local sensing of liquid properties using relaxation dynamics of stretched liquid interface. J. Colloid Interface Sci. 568, 8–15 (2020). https://doi.org/10.1016/J.JCIS.2020.02.035

    Article  ADS  Google Scholar 

  11. M.G. Pollack, A.D. Shenderov, R.B. Fair, Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2, 96–101 (2002). https://doi.org/10.1039/b110474h

    Article  Google Scholar 

  12. U.C. Yi, C.J. Kim, Characterization of electrowetting actuation on addressable single-side coplanar electrodes. J. Micromech. Microeng. 16, 2053–2059 (2006). https://doi.org/10.1088/0960-1317/16/10/018

    Article  ADS  Google Scholar 

  13. C.G. Cooney, C.Y. Chen, M.R. Emerling, A. Nadim, J.D. Sterling, Electrowetting droplet microfluidics on a single planar surface. Microfluid. Nanofluidics 2, 435–446 (2006). https://doi.org/10.1007/s10404-006-0085-8

    Article  Google Scholar 

  14. S. Bansal, P. Sen, Axisymmetric and nonaxisymmetric oscillations of sessile compound droplets in an open digital microfluidic platform. Langmuir 33, 11047–11058 (2017). https://doi.org/10.1021/acs.langmuir.7b02042

    Article  Google Scholar 

  15. J. Li, Y. Wang, H. Chen, J. Wan, Electrowetting-on-dielectrics for manipulation of oil drops and gas bubbles in aqueous-shell compound drops. Lab Chip 14, 4334–4337 (2014). https://doi.org/10.1039/C4LC00977K

    Article  Google Scholar 

  16. L. Malic, D. Brassard, T. Veres, M. Tabrizian, Integration and detection of biochemical assays in digital microfluidic LOC devices. Lab Chip. 10, 418–431 (2010). https://doi.org/10.1039/B917668C

    Article  Google Scholar 

  17. M.J. Lyell, T.G. Wang, Oscillations of a viscous compound drop. Phys. Fluids 29, 3481 (1998). https://doi.org/10.1063/1.865817

    Article  ADS  Google Scholar 

  18. Y. Zhu, Y.X. Zhang, L.F. Cai, Q. Fang, Sequential operation droplet array: an automated microfluidic platform for picoliter-scale liquid handling, analysis, and screening. Anal. Chem. 85, 6723–6731 (2013). https://doi.org/10.1021/AC4006414/SUPPL_FILE/AC4006414_SI_004.AVI

    Article  Google Scholar 

  19. R.A. Hayes, B.J. Feenstra, Video-speed electronic paper based on electrowetting. Nature 2003(425), 383–385 (2003). https://doi.org/10.1038/nature01988

    Article  ADS  Google Scholar 

  20. M. Chakraborty, A. Ghosh, S. DasGupta, Enhanced microcooling by electrically induced droplet oscillation. RSC Adv. 4, 1074–1082 (2013). https://doi.org/10.1039/C3RA46401F

    Article  ADS  Google Scholar 

  21. M.R. Foreman, S. Avino, R. Zullo, H.-P. Loock, F. Vollmer, G. Gagliardi, Enhanced nanoparticle detection with liquid droplet resonators. Eur. Phys. J. Spec. Top. 2014(223), 1971–1988 (2014). https://doi.org/10.1140/EPJST/E2014-02240-9

    Article  Google Scholar 

  22. M. Chabert, K.D. Dorfman, J.L. Viovy, Droplet fusion by alternating current (AC) field electrocoalescence in microchannels. Electrophoresis 26, 3706–3715 (2005). https://doi.org/10.1002/ELPS.200500109

    Article  Google Scholar 

  23. R.S. Allan, S.G. Mason, Particle motions in sheared suspensions. XIV. Coalescence of liquid drops in electric and shear fields. J. Colloid Sci. 17, 383–408 (1962). https://doi.org/10.1016/0095-8522(62)90016-8

    Article  Google Scholar 

  24. K. Ahn, C. Kerbage, T.P. Hunt, R.M. Westervelt, D.R. Link, D.A. Weitz, Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices. Appl. Phys. Lett. 88, 1–3 (2006). https://doi.org/10.1063/1.2164911

    Article  Google Scholar 

  25. T. Liu, S. Seiffert, J. Thiele, A.R. Abate, D.A. Weitz, W. Richtering, Non-coalescence of oppositely charged droplets in pH-sensitive emulsions. Proc. Natl. Acad. Sci. 109, 384–389 (2012). https://doi.org/10.1073/PNAS.1019196109

    Article  ADS  Google Scholar 

  26. Y. Couder, E. Fort, C.-H. Gautier, A. Boudaoud, From bouncing to floating: noncoalescence of drops on a fluid bath. Phys. Rev. Lett. 94, 177801 (2005). https://doi.org/10.1103/PhysRevLett.94.177801

    Article  ADS  Google Scholar 

  27. S. Karpitschka, H. Riegler, Sharp transition between coalescence and non-coalescence of sessile drops. J. Fluid Mech. 743, 1 (2014). https://doi.org/10.1017/JFM.2014.73

    Article  ADS  MathSciNet  Google Scholar 

  28. F. Pacheco-Vázquez, R. Ledesma-Alonso, J.L. Palacio-Rangel, F. Moreau, Triple Leidenfrost effect: preventing coalescence of drops on a hot plate. Phys. Rev. Lett. 127, 204501 (2021). https://doi.org/10.1103/PHYSREVLETT.127.204501/FIGURES/5/MEDIUM

    Article  ADS  Google Scholar 

  29. S. Bansal, P. Sen, Effect of electrowetting induced capillary oscillations on coalescence of compound droplets. J. Colloid Interface Sci. 530, 223–232 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the National Nanofabrication Centre and the Micro/Nano Characterization Facility at CeNSE, IISc for the fabrication and characterization. All the authors would like to thank the Department of Science and Technology and Ministry of Education, Government of India for financial support. Rutvik Lathia wants to acknowledge Prime Minister's Research Fellowship for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prosenjit Sen.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 50 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lathia, R., Sagar, N. & Sen, P. Multi-droplets non-coalescence on open-chip electrowetting platform. Eur. Phys. J. Spec. Top. 232, 859–865 (2023). https://doi.org/10.1140/epjs/s11734-022-00661-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00661-z

Navigation